ESCAP/WMO Typhoon Committee Fifty second Session 25 - 28 February 2020 Hong Kong China FOR PARTICIPANTS ONLY WRD/TC.52/8.2 5 February 2020 ENGLISH ONLY

REPORT ON AMENDMENTS TO THE TYPHOON COMMITTEE OPERATIONAL MANUAL

(submitted by the Rapporteur)

Summary and Purpose of Document:

This document presents draft amendments to the Typhoon Committee Operational Manual - Meteorological Component (TOM) proposed by the RSMC Tokyo – Typhoon Center and the Members.

ACTION REQUIRED:

The Committee is invited to review and approve the proposed amendments to the TOM.

APPENDIXES:

A) DRAFT TEXT FOR INCLUSION AT SESSION REPORTB) UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

DRAFT TEXT FOR INCLUSION IN THE SESSION REPORT

x.x Review of Typhoon Committee Operational Manual (TOM)

- 1. The Session noted that the Typhoon Committee Operational Manual (TOM) rapporteur requests WMO to publish and upload the 2020 edition of TOM on the Tropical Cyclone Programme (TCP) Website as submitted by the Rapporteur, with the amendments given in Appendix XX.
- 2. The Committee expressed its appreciation to the rapporteur for update of TOM.

APPENDIX B:

UPDATE OF THE TYPHOON COMMITTEE OPERATIONAL MANUAL

1. The Typhoon Committee Operational Manual - Meteorological Component (TOM) has been reviewed and updated every year since its first issue in 1987. The 2019 edition was completed and posted on the WMO website in March 2019 in accordance with the approval of amendments to the 2018 edition by the Typhoon Committee 51st session (26 February to 1 March 2019, Guangzhou, China).

2. At the 51st session, the Committee decided that the rapporteur of the RSMC Tokyo -Typhoon Center in Japan Meteorological Agency (JMA) continues arrangements for updating the TOM. In this connection, on 10 July 2019 in advance of the annual revision of TOM, the rapporteur, Dr. EITO Hisaki of the RSMC Tokyo - Typhoon Center requested the focal points of the meteorological component of the Members not only input on tropical cyclone analysis and forecast procedure by the NMSs as attached in Annex 1, which was approved at the Typhoon Committee 51st session, but confirmation of description on geostationary meteorological satellites which Typhoon Committee members operate, which was drafted by the rapporteur as attached in Annex 2.

3. Input on analysis and forecast procedure were submitted by six focal points of China; Hong Kong, China; Macao, China; Malaysia; Philippines and Republic of Korea. Proposal for revision of draft on geostationary meteorological satellites were also submitted by two focal points of China and Republic of Korea.

4. On 17 December 2019, the rapporteur proposed some revisions, including reflection of the inputs on TC analysis and forecast procedure from the members and proposal for revision of draft on geostationary meteorological satellites, to the focal points of the meteorological component of the Members and invited them to provide comments for the revision and proposals for updates.

5. Proposed revisions by the RSMC Tokyo - Typhoon Center are attached in Annex 3. The major points of the revisions are given below:

- Revision of the information on Tropical Cyclone warnings for the high seas (Section 4.4) and modification of the contents (Section 1.3, 1.4, Appendix 1-B) to go along with the WMO Manual on Marine Meteorological Services (WMO No.558).
- Revision of description on operational procedure for the assignment of names of TCs (Appendix 1-B)
- Amendments of the draft on geostationary meteorological satellites operated by TC members according to the proposals by two focal points of China and Republic of Korea. (Appendix 2-F).
- Addition of information on SAREP report by China (Appendix 2-H)
- Update of the list of the products and addition of example of the products provided by

RSMC Tokyo - Typhoon Center available at the Numerical Typhoon Prediction Website (Appendix 3-A).

- Addition of the list of NWP models and Ensemble Prediction Systems used in the Numerical Typhoon Prediction Website (Appendix 3-A).
- Addition of the information on tropical cyclone analysis and forecast procedure by the NMSs of Typhoon Committee Members (Section 3-3, Appendix 3-B).
- Proposal of new format for satellite imagery receiving facilities for 2021 edition as shown in Annex 4 (Appendix 2-G)

6. Proposals for updates and amendments to the revised TOM were submitted by the five focal points of Hong Kong, China; Japan; Macao, China; Republic of Korea and Thailand as attached in Annex 5. The major points of the amendments are given below:

- Revision of the description on tropical cyclone passage report (Section 2.6)
- Revision of the description on forecast at RSMC Tokyo -Typhoon Center (Section 3.2)
- Revision of the description on tropical cyclone warnings for the high seas (Section 4.4)
- Revision of the description on tropical cyclone SIGMET and advisory information for international aviation (Section 4.5)
- Update of the information on surface observation stations (Appendix 2-A)
- Update of the distribution map of the radar stations (Appendix 2-D)
- Update of the information on the radar stations (Appendix 2-E)
- Update of the information on the meteorological geostationary satellite (Appendix 2-F)
- Update of the information on the satellite imagery receiving facilities (Appendix 2-G)
- Update of the information on NWP products provided by RSMC Tokyo Typhoon Center and revision of the information on NWP models used in Numerical Typhoon Prediction website (Section 3-A)
- Update of the information on the analysis methods, forecasting methods and NWP (Appendix 3-B)
- Update of the information on the broadcasting stations on cyclone warnings for ships on the high seas(Appendix 4-C)
- Update of the information on the meteorological telecommunication network (Appendix 5-B)
- Update of the contact details (Appendix 5-C)
- Update of the list of collection and distribution of information related to tropical cyclones (Appendix 5-E)

Format of tropical cyclone analysis and forecast procedure by the NMSs of Typhoon Committee Members

APPENDIX 3-B

Analysis methods, forecasting methods and NWP system for forecasting currently used by the NMSs of Typhoon Committee Members

Name of the Member: [Please specify]

1 Tropical Cyclone Analysis

[Please describe analyzed Tropical Cyclone (TC) parameters and methods used for analysis by filling out the below table.]

Parameter	Time	Methods	Other Sources
[Please specify analyzed TC parameters (e.g. position, speed, central pressure, maximum sustainable wind)]	[Please specify analysis time]	[Please describe both satellite-based and non satellite-based methods used for analysis of respective parameters (e.g. satellite imagery and radar image for position, Dvorak technique for intensity estimate.).]	Although TC analysis including Dvorak technique is still challenging for some Members, analytical results made by other centers, including those by RSMCs, are available via GTS and/or the Internet on a real-time basis. If your Service refers to such products by other centers, please specify them.

2 Tropical Cyclone Forecasting

[Please describe forecasted Tropical Cyclone (TC) parameters and methods used for forecast by filling out the below table.]

Parameter	Issuance Time	Lead Time	Methods
[Please specify forecast TC parameters (e.g. track, central pressure, maximum sustainable wind, strong wind areas, cyclogenesis).]	[Please specify issuance time]	[Please specify lead time]	[Nowadays, operational TC track forecasts are generally based on numerical weather prediction (NWP) guidance. Such NWP guidance products of major numerical centers are available for WMO Members (e.g. JMA provides numerical track guidance of major numerical centers for Western North Pacific to Typhoon Committee Members at JMA's Numerical Typhoon Prediction Website (https://tynwp-web.kishou.go.jp/)). If your Service refers to such numerical track guidance products of other centers, please specify sources and how you use them for your forecasts. As for TC Intensity forecasting, it still remains a difficult task, while TC track forecasts have been steadily improved because of advances in NWP guidance. If your Service issues intensity forecasts, please describe how they are produced. If your Service refers to TC intensity forecasts of other centers, please specify them.

	If you issue any forecasts such as cyclogenesis other than track and intensity, please specify them.]

3 NWP Systems in Operational Use

[Please describe NWP systems in operational use at your Service. In the rightmost column, please specify whether your Service runs NWP model/EPS on your own or uses systems provided by other centers.]

System	Domain	Horizontal Resolution	Number of Vertical Level	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)

Reference

[If any, please specify]

Annex 2

Draft of technical information on geostationary meteorological satellites Typhoon Committee members operate

APPENDIX 2-G TECHNICAL SPECIFICATIONS OF SATELLITE OPERATED BY TYPHOON COMMITTEE MEMBERS

- 1. FY-2F (operational since 2012) / FY-2G (operational since 2015) / FY-2H (operational since 2019) [China]
 - (a) Observations
 - (i) Full-Disk Observations (FY-2G/H): Every hour
 - (ii) Regional Observations (FY-2F): Every 6 minutes
 - (iii) [if any other observation (e.g. request-based observation), please specify]

(b) Products

- (i) Full-Disk Observation Data (FY-2G/H): Every hour
- (ii) Regional Observation Data (FY-2F): Every 6 minutes
- (iii) Full-Disk AMV Product:
- (iv) [if any other product, please specify]

(c) Dissemination ways

- (i) Direct Broadcast Services
- (ii) CMAcast (communication satellite dissemination service)
- (iii) Internet Services

[National Satellite Meteorological Center Portal Site] http://www.nsmc.gov.cn/en

[FengYun Satellite Data Center Site] http://satellite.nsmc.org.cn

(iv) [if any other service, please specify]

2. FY-4A (operational since 2018) [China]

(a) Observations

- (i) Full-Disk Observations: Every hour
- (ii) 3 Continuous Full-Disk Observations: Every 3 hours
- (iii) China Area Observations: Every 5 minutes

(iv) [if any other observation (e.g. request-based observation), please specify]

(b) Products

- (i) Full-Disk Observation Data: Every hour
- (ii) 3 Continuous Full-Disk Observation Data: Every 3 hours
- (iii) China Area Observation Data: Every 5 minutes
- (iv) [if any other product, please specify]

(c) Dissemination ways

- (i) Direct Broadcast Service
- (ii) CMACast (communication satellite dissemination service)
- (iii) Internet Services

[FTP-based Service] http://fy4.nsmc.org.cn/data/en/data/realtime.html

[National Satellite Meteorological Center Portal Site] http://www.nsmc.gov.cn/en

[FengYun Satellite Data Center Site] http://satellite.nsmc.org.cn

(iv) [if any other service, please specify]

3. Himawari-8 (operational since 2015) / Himawari-9 (operational since 2017)¹ [Japan] (a) Observations

- (i) Full-Disk Observations: Every 10 minutes
- (ii) Japan Area Observations: Every 2.5 minutes
- (iii) Target Area Observations including those Based on Request by NMHSs (HimawariRequest)²: Every 2.5 minutes

(b) Products

- (i) Full-Disk Observation Data: Every 10 minutes
- (ii) Japan Area Observation Data: Every 2.5 minutes
- (iii) Target Area Observation Data: Every 2.5 minutes
- (iv) Full-Disk AMV: Every hour
- (v) Full-Disk Clear Sky Radiance (CSR): Every hour

¹ More information available on https://www.jma-net.go.jp/msc/en/support/index.html

² More information available on https://www.jma.go.jp/jma/jma-eng/satellite/HimawariRequest.html

(c) Dissemination ways

- (i) HimawariCloud (Internet Cloud Service) Service which distributes full-spec imagery derived from the Himawari-series satellites (https://www.data.jma.go.jp/mscweb/en/himawari89/cloud_service/cloud_service. html)
- (ii) HimawariCast (communication satellite dissemination service) Service which disseminates primary sets of imagery from the Himawari-series satellites via a communication satellite (https://www.data.jma.go.jp/mscweb/en/himawari89/himawari_cast/himawari_cast t.html)
- (iii) Internet Services for National Meteorological and Hydrological Services (NMHSs)
 [JMA real-time satellite imagery webpage]
 https://www.jma.go.jp/en/gms/

[MSC (Meteorological Satellite Center) real-time satellite imagery webpage] https://www.data.jma.go.jp/mscweb/data/himawari/

[SATAID (Satellite Animation and Interactive Diagnosis) Service] https://www.wis-jma.go.jp/cms/sataid/

[JDDS (JMA Data Dissemination Service)] https://www.data.jma.go.jp/mscweb/en/himawari89/JDDS_service/JDDS_service. html

4. COMS (operational since 2011) [Republic of Korea]

(a) Observations

- (i) Full-Disk Observations: Every 3 hours
- (ii) Extended North Hemisphere Observations: Every 15 minutes
- (iii) [if any other observation, please specify]

(b) Products

- (i) Full-Disk Observation Data: Every 3 hours
- (ii) Extended North Hemisphere Observation Data: Every 15 minutes
- (iii) Full-Disk AMV: Every 3 hours
- (iv) [if any other observation, please specify]

(c) Dissemination ways

- (i) Direct Broadcast Service (http://nmsc.kma.go.kr/html/homepage/en/ver2/static/selectStaticPage.do?view =datacenter.dataService)
- (ii) Internet Services
 [National Meteorological Satellite Center website]
 http://nmsc.kma.go.kr/jsp/homepage/eng/main.do

[Data Collection or Production Centre website] http://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home

(iii) [if any other service, please specify]

5. GEO-KOMPSAT-2A (operational since 2019) [Republic of Korea]

(a) Observations

- (i) Full-Disk Observations: Every 10 minutes
- (ii) Extended Local Area Observations: Every 2 minutes
- (iii) Local Area Observations: Every 2 minutes
- (iv) [if any other observation (e.g. request-based observation), please specify]

(b) Products

- (i) Full-Disk Observation Data: Every 10 minutes
- (ii) Extended Local Area Observation Data: Every 2 minutes
- (iii) Local Area Observation Data: Every 2 minutes
- (iv) [if any other product, please specify]

(c) Dissemination ways

- (i) Direct Broadcast Service (http://nmsc.kma.go.kr/html/homepage/en/ver2/static/selectStaticPage.do?view =satellites.gk2a.dataServicePlan)
- (ii) Internet Services
 - [FTP-based Service]

All sixteen channels data of full-disk image will be put on KMA's FTP server designated for GEO-KOMPSAT-2A data dissemination in every 10 minutes.

[National Meteorological Satellite Center website] http://nmsc.kma.go.kr/jsp/homepage/eng/main.do

[Data Collection or Production Centre website] http://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home (iii) [if any other service, please specify]

Draft Revisions to

the Typhoon Committee Operational Manual – Meteorological Component (TOM) proposed by the RSMC Tokyo – Typhoon Center (except for editorial changes)

Page	Line	Proposed Revision	Comments
Section	1.3		
4	L13	<u>Gale-force wind warning:</u> warning: Meteorological message intended to warn those concerned of the occurrence or expected occurrence of gale force wind. <u>Gust</u> : Instantaneous peak value of surface wind speed. <u>Hurricane force</u> : Average wind speed of 64 knots (32.7 m/s, 118 km/h) and above, or wind force 12 in the Beaufort scale. <u>Hurricane-force_wind_warning</u> : Meteorological message intended to warn those concerned of the occurrence or expected occurrence of hurricane-force	Modification of the description in accordance with the WMO Manual on Marine Meteorological Services (WMO No.558)
4	L35	wind. Storm force: Average wind speed of 48 knots (24.5 m/s, 89 km/h) to 63 knots (32.6 m/s, 117 km/h), or wind force 10 or 11 in the Beaufort scale. Storm-forcewindwarning: Meteorological message intended to warn those concerned of the occurrence or expected occurrence of storm force wind.	Modification of the description in accordance with the WMO Manual on Marine Meteorological Services (WMO No.558)
		<u>Storm_surge</u> : The difference between the actual water level under the influence of a meteorological disturbance (storm tide) and the level which would have been attained in the absence of the meteorological disturbance (i.e. astronomical tide). (Storm surge results mainly from the shoreward movement of water under the action of wind stress. A minor contribution is also made by the hydrostatic rise of water resulting from the lowered barometric pressure.)	
		<u>Storm tide</u> : The actual sea level as influenced by a weather disturbance. The storm tide consists of the normal astronomical tide and the storm surge. <u>Storm_warning</u> : Meteorological message intended to warn those concerned of the occurrence or expected occurrence of storm force wind.	

6	L9	 (a) The following units/indicators are used for marine (WWMIWS) purposes, in accordance with the WMO Manual on Marine Meteorological Services (WMO No.558): (i) Distance in nautical miles, the unit (nm) being stated; 	Modification of the description in accordance with the WMO Manual on Marine Meteorological Services (WMO
		 (ii) Location (position) by degrees and where possible tenths of degrees of latitude and longitude preferably expressed by words e.g. "12.2S, 168.4E"; 	No.558)
		 (iii) Direction of motion to the nearest sixteen points of the compass or in degree to the nearest ten, given in words figures, e.g. "SOUTHSOUTHEAST" or "160 DEGREES"; 	
		(iv) Speed (wind speed and speed of movement of tropical cyclones) in knots, the unit (kt) being stated;	
		(v) Confidence in the centre position in nautical miles (nm) or in position good, fair or poor;	
		(vi) Pressure in hectopascals (hPa), the unit being stated;	
		(vii) Time in Universal Time Co-ordinated (UTC), the unit being stated.	
Section	3.3		
12	L27	The NMSs of Typhoon Committee Members are performing analysis and forecasting development and movement of tropical cyclones in the region. The analysis methods, the forecasting methods and NWP systems for forecasting currently used by the NMSs of Typhoon Committee Members are given in Appendix	Addition of description related to Appendix 3-B
		3-B . The final responsibility for the operational analysis and forecasting will be with the NMSs of each of the Members.	
Section	44	Premiders.	<u> </u>
<u>14</u>	L1	4.4 Tropical cyclone warnings for the high seas (WWMIWS)	Revision of the information on Tropical Cyclone
		The IMO/WMO Worldwide Met-Ocean Information and Warning Service (WWMIWS) is the internationally coordinated service for the promulgation of meteorological warnings and forecasts.	warnings for the high seas in accordance with the WMO Manual on Marine
		The WWMIWS produces marine meteorological maritime safety information messages for issuance on Enhanced Group Call (EGC) satellite systems	Meteorological Services (WMO No.558)

 (SafetyNET), NAVTEX and High-frequency Narrow-band Direct Printing (HF NBDP) communication systems covering the following areas: warnings and forecasts for the High Seas; warnings and forecasts for coastal, offshore and local waters (including ports, lakes and harbour areas).
Operational guidance for handling and formatting meteorological information is given in detail in the Annex IV of the WMO Technical Regulations (Manual on Marine Meteorological Services - WMO-No. 558).
The provision of warnings for weather systems that produce average wind speeds of 34 knots and greater are a mandatory requirement of the WWMIWS.
In relation to international marine requirements, the WWMIWS coordinates the broadcast of forecasts and warnings to vessels at sea through the Global Maritime Distress and Safety System (GMDSS), which includes SafetyNET EGC satellite communications.
As part of the WWMIWS coordination, there are the following types of Centres:
Issuing service means a National Meteorological Service which has accepted responsibility for ensuring that meteorological warnings and forecasts for shipping are disseminated through approved EGC satellite systems to the designated area (METAREA) for which the Service has accepted responsibility under the WWMIWS.
Preparation service means a National Meteorological Service which has accepted responsibility for the preparation of warnings and forecasts for parts of or an entire designated area (METAREA) in the WMO system for the dissemination of meteorological forecasts and warning to shipping under the WWMIWS and for their transfer to the relevant Issuing Service for broadcast.
The METAREA Coordinator is responsible for ensuring that Tropical Cyclone warnings for the WWMIWS in their METAREA are issued onto the appropriate GMDSS communication system.
Areas of responsibility
Members having official responsibility as an Issuing Service within the WWMIWS for issuing warnings on approved EGC satellite systems are Japan (METAREA

XI North) and China (METAREA XI South).	
The WMO in its Manual on Marine Meteorological Services sets out the issue of weather and sea bulletins for the high seas in six parts. The first part relates to storm warnings in plain language. Areas of responsibility of each nation for issuing the storm warnings are pre assigned. The pre-assigned forecast areas of Typhoon Committee Members were agreed upon by Regional Associations II and V (Res. 17 (IV-RA II; WMO-181, 1966) and Res.10 (IV-RA V; WMO-187, 1966)). Weather forecast areas fixed nationally by individual Typhoon Committee Members are shown in WMO Publication No. 9, Weather Reporting Volume D - Information for Shipping.	
Format and content of bulletins	
The format and content of warnings issued for the WWMIWS, as outlined below, has been derived from guidance provided in the Manual on Marine Meteorological Services (WMO No.558).	
 Tropical Cyclone warnings for the WWMIWS shall use the following wind warning category labels: Gale force wind warning (Beaufort force 8 or 9); Storm-force wind warning (Beaufort force 10 or 11); Typhoon-force/Hurricane-force wind warning (Beaufort force 12 or over). 	
 Any Tropical Cyclone related wind warning issued for the WWMIWS should include the following content (excluding any relevant system metadata requirements): (a) Header label for marine radio broadcast purposes ("SECURITE") Note: This label needs to be visible on any product 	
 provided to mariners with the potential to be read out on marine radio systems. (b) Type of wind warning (GALE-FORCE, STORM-FORCE, TYPHOON-FORCE/HURRICANE-FORCE WIND WARNING) (c) Name of the issuing centre 	
 (d) Name of the system and name of the basin (e) Date and time of reference in UTC (f) Type of disturbance (Tropical cyclone) (g) Location of disturbance (latitude and longitude) (h) Central pressure (hPa) (i) Intensity (maximum 10-minute average winds in knots) 	

	(j) Direction and speed of movement of the	
	 disturbance (k) Extent of affected area in nautical miles (l) Wind speed (knots) and direction in the affected areas 	
	(m) Sea and swell condition in affected areas (in qualitative terms)	
	(n) Expected location and intensity at 12 and 24 hour time periods.	
	(o) Indication of when next warning will be issued.	
	When no warnings are to be issued, that fact shall be stated in the bulletins.	
Appendix 1-		
26 L7	name each time a 4-digit identification number is to be assigned. That is, names on the Typhoon Committee list will only be given to tropical cyclones of tropical storm strength or above. Each tropical cyclone should be identified by its name followed by the 4-digit number in brackets. The same names and numbers should also be used in bulletins issued by the Tokyo Tropical Cyclone Advisory Centre under the umbrella of the International Civil Aviation Organization (ICAO) as well as in bulletins for Meteorological Area (METAREA)-XI of the IMO/WMO Worldwide Met-Ocean Information and Warning Service (WWMIWS), Global Maritime Distress and Safety System (GMDSS) issued by both China and Japan. This would contribute to the standardization of the usage of names of tropical cyclones as was desired by the Typhoon Committee.	Modification of the description in accordance with the WMO Manual on Marine Meteorological Services (WMO No.558)
	will be assigned following the pre-determined order. The name would remain unchanged throughout the life history of the tropical cyclone. To avoid confusion, tropical cyclones given a name before crossing the Date Line or 100°E and entering the western North Pacific should be assigned a number by RSMC Tokyo - Typhoon Center but should not be assigned a new name in the Typhoon Committee list. RSMC Honolulu Hurricane Center and RSMC New Delhi will continue the use of the tropical cyclone names assigned by RSMC Tokyo - Typhoon Center when tropical cyclones cross the Date Line from west to east or 100°E from east to west, respectively.	-
Appendix 1-		·
24	To be updated by Annex 3-1.	Revision of list of acronyms related to procedure of
		analysis and forecast of TCs etc.
Appendix 2-	F	·

59	To be replaced by Annex 3-2	Revision of the description according to the comments from members.
Appendix 2		
60	To be replaced by Annex 3-3	Update the list of satellite imagery receiving system
60	To be replaced in the future by Annex 4	Revision of the list of satellites
Appendix 2	-H	
62	To be replaced by Annex 3-4	Update of the list of SAREP reports
Appendix 3	-A List of other products provided by RSMC Tokyo - Ty	phoon Center
70	To be replaced by Annex 3-5	Update of the list of products available at Numerical Typhoon Prediction Website:
Appendix 3		
After 71	To be added by Annex 3-6	Addition of "Example of the products provided by RSMC Tokyo - Typhoon Center", "Deterministic NWP models used in the Numerical Typhoon Prediction website" and "EPS used in the Numerical Typhoon Prediction website"
Appendix 3	-B	
After 71	To be added by Annex 3-7	Addition of explanation about products and NWP/EPS at available at NTP web site.
Appendix 4	-C	
77	To be replaced by Annex 3-8	Revision of the area name
Appendix 5	-B	
	9 Operated by China: Asiasat-4 (122.2°E)CMAcast Operational observations, warnings, NWP products, satellite image and fax distribution	Revision of the satellite name to service name

APPENDIX 1-C LIST OF ACRONYMS USED IN THE OPERATIONAL MANUAL - METEOROLOGICAL COMPONENT -

AFTNAeronautical Fixed Telecommunication NetworkAIREPAir-reportAMeDASAutomated Meteorological Data Acquisition SystemAMVAtmospheric Motion VectorAPTAutomatic Picture TransmissionASCATAdvanced SCATterometerASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction SystemESCAPEconomic and Social Commission for Asia and the Pacific
AMeDASAutomated Meteorological Data Acquisition SystemAMVAtmospheric Motion VectorAPTAutomatic Picture TransmissionASCATAdvanced SCATterometerASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological Satellites
AMVAtmospheric Motion VectorAPTAutomatic Picture TransmissionASCATAdvanced SCATterometerASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
APTAutomatic Picture TransmissionASCATAdvanced SCATterometerASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
ASCATAdvanced SCATterometerASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
ASDARAircraft to Satellite Data RelayBoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
BoOMBureau of MeteorologyBUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
BUFRBinary Universal Form for the Representation of meteorological dataBUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
BUOYReport of a buoy operationCAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
CAPPIConstant Altitude Plan Position IndicatorCMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
CMAChina Meteorological AdministrationCMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
CMCCanadian Meteorological CentreCSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
CSRClear Sky RadianceDDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
DDNDataDirect NetworksDWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
DWDDeutscher WetterdienstECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
ECMWFEuropean Centre for Medium-Range Weather ForecastsEUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
EUMETSATEuropean Organisation for the Exploitation of Meteorological SatellitesEPSEnsemble Prediction System
EPS Ensemble Prediction System
ESCAP Economic and Social Commission for Asia and the Pacific
FAX Facsimile
FTP File Transfer Protocol
<u>FY Feng-Yun</u>
FY-ESM Feng-Yun Emergency Support Mechanism
GEO-KOMPSAT Geostationary Korea Multi-Purpose Satellite
GEPS Global EPS
GMS Geostationary Meteorological Satellite
GNSS Global Navigation Satellite System
GRIB General regularly distributed information in binary form
GSM Global Spectral Model
GTS Global Telecommunication System
HKO Hong Kong Observatory
HRPT High Resolution Picture Transmission
HWRF Hurricane Weather Research and Forecast System
ICAO International Civil Aviation Organization
IR Infrared
JCOMM Joint Technical Commission for Oceanography and Marine Meteorology
JCSAT Japan Communications Satellite
JMA Japan Meteorological Agency
JTWC Joint Typhoon Warning Center
KMA Korea Meteorological Administration
METAR Aerodrome/aviation routine meteorological report
MPLS Multi-Protocol Label Switching
MSTP Multiple Spanning Tree Protocol
MTI Moving Target Indicator
MTSAT Multi-functional Transport Satellite
MWO Meteorological Watch Office
NCEP National Centers for Environmental Prediction
NESDIS National Environmental Satellite, Data and Information Service

NHM	Non-Hydrostatic Model
NMC	National Meteorological Centre
NMHS	National Meteorological and Hydrological Service
NMS	National Meteorological Service
NOAA	National Oceanic and Atmospheric Administration
NRL	Naval Research Laboratory
NWP	Numerical Weather Prediction
OLR	Outgoing Longwave Radiation
OPMET	Operational Meteorological information
OSCAT	OceanSat Scatterometer
PAGASA	Philippine Atmospheric, Geophysical and Astronomical Services
	Administration
PBL	Planetary Boundary Layer
PILOT	Upper-wind report from a fixed land station
PNG	Portable Network Graphics
PWV	Precipitable Water Vapour
R/A	Radar/raingauge-Analyzed precipitation
RADOB	Report of ground radar weather observations
RO	Radio Occultation
ROBEX	Regional OPMET Bulletin Exchange
RSMC	Regional Specialized Meteorological Centre
RTH	Regional Telecommunication Hub
S- . VISSR	Stretched VISSR
SAREP	Report of synoptic interpretation of cloud data obtained by a
	meteorological satellite
SATAID	SATellite Animation and Interactive Diagnosis
SHIP	Report of surface observation from a sea station
SHIPS	Statistical Hurricane Intensity Prediction Scheme
SST	Sea Surface Temperature
SYNOP	Report of surface observation from a fixed land station
TAC	Traditional Alphanumeric Code Form
TBB	Temperature Black Body
TC	Typhoon Committee
TCAC	Tropical Cyclone Advisory Centre
TCP	Tropical Cyclone Programme
TCP/IP	Transmission Control Protocol / Internet Protocol
TCS	Typhoon Committee Secretariat
TDCF	Table-Driven Code Form
TEMP	Upper-level pressure, temperature, humidity and wind report from a fixed
	land station
TIFS	Typhoon Intensity Forecast scheme based on SHIPS
TOPEX	Typhoon Operational Experiment
TRAMS	Tropical Regional Atmosphere Model for the South China Sea
TS	Tropical Storm
TWRF	Typhoon Weather Research and Forecast System
UKMO	United Kingdom Met Office
UNDP	United Nations Development Programme
UTC	Universal Time Coordinated
VIS	Visible
VISSR	Visible and Infrared Spin Scan Radiometer
VPN	Virtual Private Network
WMO	World Meteorological Organization
WV	Water Vapour
WWMIWS	IMO/WMO Worldwide Met-Ocean Information and Warning Service

TECHNICAL SPECIFICATIONS OF SATELLITE OPERATED BY TYPHOON COMMITTEE MEMBERS

1. FY-2F (operational since 2012) / FY-2G (operational since 2015) / FY-2H (operational since 2019) [China]

(d) Observations

- (i) Full-Disk Observations (FY-2G/H): Every hour
- (ii) Regional Observations (FY-2F): Every 6 minutes
- (iii) Regional Observations based on request (FY-ESM³): Every 6 minutes

(e) Products

- (i) Full-Disk Observation Data (FY-2G/H): Every hour
- (ii) Regional Observation Data (FY-2F): Every 6 minutes
- (iii) Regional Observation Data based on request (FY-ESM³): Every 6 minutes
- (iv) Full-Disk AMV Product:

(f) Dissemination ways

- (i) Direct Broadcast Services
- (ii) CMAcast (communication satellite dissemination service)
- (iii) Internet Services[National Satellite Meteorological Center Portal Site] http://www.nsmc.gov.cn/en

[FengYun Satellite Data Center Site] http://satellite.nsmc.org.cn

2. FY-4A (operational since 2018) [China]

(a) Observations

- (i) Full-Disk Observations: Every hour
- (ii) China Area Observations: Every 5 minutes
- (iii) Regional Observations based on request (FY-ESM³): Every 5 minutes

(b) Products

- (i) Full-Disk Observation Data: Every hour
- (ii) China Area Observation Data: Every 5 minutes
- (iii) Regional Observations Data based on request (FY-ESM³): Every 5 minutes

³ More information available on http://fy4.nsmc.org.cn/service/en/emergency/index.html

(c) Dissemination ways

- (i) Direct Broadcast Service
- (ii) CMACast (communication satellite dissemination service)
- (iii) Internet Services

[FTP-based Service] http://fy4.nsmc.org.cn/data/en/data/realtime.html

[National Satellite Meteorological Center Portal Site] http://www.nsmc.gov.cn/en

[FengYun Satellite Data Center Site] http://satellite.nsmc.org.cn

3. Himawari-8/9 (operational since 2015) / Himawari-9 (operational since 2017) [Japan]

(a) Observations

- (i) Full-Disk Observations: Every 10 minutes
- (ii) Japan Area Observations: Every 2.5 minutes
- (iii) Target Area Observations including those Based on Request by NMHSs (HimawariRequest)⁴: Every 2.5 minutes

(b) Products

- (i) Full-Disk Observation Data: Every 10 minutes
- (ii) Japan Area Observation Data: Every 2.5 minutes
- (iii) Target Area Observation Data: Every 2.5 minutes
- (iv) Full-Disk AMV: Every hour
- (v) Full-Disk Clear Sky Radiance (CSR): Every hour

(c) Dissemination ways

(i) HimawariCloud (Internet Cloud Service)

Service which distributes full-spec imagery derived from the Himawari-series satellites

(https://www.data.jma.go.jp/mscweb/en/himawari89/cloud_service/cloud_service. html)

(ii) HimawariCast (communication satellite dissemination service)
 Service which disseminates primary sets of imagery from the Himawari-series satellites via a communication satellite
 (https://www.data.jma.go.jp/mscweb/en/himawari89/himawari cast/himawari cast.ht

⁴ More information available on https://www.jma.go.jp/jma/jma-eng/satellite/HimawariRequest.html

(iii) Internet Services for National Meteorological and Hydrological Services (NMHSs)
 [JMA real-time satellite imagery webpage]
 https://www.jma.go.jp/en/gms/

[MSC (Meteorological Satellite Center) real-time satellite imagery webpage] https://www.data.jma.go.jp/mscweb/data/himawari/

[SATAID (Satellite Animation and Interactive Diagnosis) Service] https://www.wis-jma.go.jp/cms/sataid/

[JDDS (JMA Data Dissemination Service)] https://www.data.jma.go.jp/mscweb/en/himawari89/JDDS_service/JDDS_service. html

4. COMS (operational since 2011) [Republic of Korea]

(a) Observations

- (i) Full-Disk Observations: Every 3 hours
- (ii) Extended North Hemisphere Observations: Every 15 minutes
- (iii) Local Area Observations: Every 15 minutes

(b) Products

- (i) Full-Disk Observation Data: Every 3 hours
- (ii) Extended North Hemisphere Observation Data: Every 15 minutes
- (iii) Full-Disk AMV: Every 3 hours

(c) Dissemination ways

- (i) Direct Broadcast Service (http://nmsc.kma.go.kr/html/homepage/en/ver2/static/selectStaticPage.do?view= datacenter.dataService)
- (ii) Internet Services[National Meteorological Satellite Center website] http://nmsc.kma.go.kr/jsp/homepage/eng/main.do

[Data Collection or Production Centre website] http://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home

5. GEO-KOMPSAT-2A (operational since 2019) [Republic of Korea]

(a) Observations

- (i) Full-Disk Observations: Every 10 minutes
- (ii) Extended Local Area Observations: Every 2 minutes

ml)

(iii) Local Area Observations: Every 2 minutes

(b) Products

- (i) Full-Disk Observation Data: Every 10 minutes
- (ii) Extended Local Area Observation Data: Every 2 minutes
- (iii) Local Area Observation Data: Every 2 minutes

(c) Dissemination ways

- (i) Direct Broadcast Service (http://nmsc.kma.go.kr/html/homepage/en/ver2/static/selectStaticPage.do?view=s atellites.gk2a.dataServicePlan)
- (ii) Internet Services
 - [FTP-based Service]

All sixteen channels data of full-disk image will be put on KMA's FTP server designated for GEO-KOMPSAT-2A data dissemination in every 10 minutes.

[National Meteorological Satellite Center website] http://nmsc.kma.go.kr/jsp/homepage/eng/main.do

[Data Collection or Production Centre website]

http://dcpc.nmsc.kma.go.kr/openwis-user-portal/srv/en/main.home

APPENDIX 2-G SATELLITE IMAGERY RECEIVING FACILITIES AT TYPHOON COMMITTEE MEMBERS

Member	Statio	Himawari 1. HimawariCloud 2. HimawariCast	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS	
Cambodia			1, 2		
	Beijing	39.9°N, 116.4°E	1	1 , 2	
	Shanghai	31.1°N, 121.4°E		2	
	Shenyan	4 1.8°N, 123.6°E			
	Guangzhou	23.1°N, 113.3°E			
	Cheng-chou	34.7°N, 113.7°E			
China	Cheng-tu	31.2°N, 114.0°E			
	Lan-chou	36.1°N, 103.9°E			
	Kunming	25.0°N, 102.7°E			
	Changsh	28.2°N, 113.1°E			
	Nanjin	32.0°N, 118.8°E			
	Harbin	4 5.8°N, 126.8°E			
DPR Korea	Pyongyang	39.0°N, 125.8°E		1	
Hong Kong, China ⁵	Kowloon	22.3°N, 114.2°E	1, 2	1	
Japan	Minamitorishima	24.3°N, 154.0°E	2		
Lao PDR			2		
Macao, China6	Масао	22.2°N, 113.5°E	1, 2	1	
Malaysia	Petaling Jaya	3.1°N, 101.7°E	1, 2	1	
	Quezon City	14.7°N, 121.0°E	1, 2	1	
Dhilippipoo	Cagayan de Oro City	8.5°N, 124.6°E			
Philippines	Pasay City	14.5°N, 121.0°E			
	Cebu	10.3°N, 124.0°E			

 ⁵ Hong Kong, China receives AQUA (MODIS), SNPP (CrIs, VIIRS, ATMS), FY-2 (S-VISSR), and TERRA (MODIS), METOP-A and METOP-B (AMSU-A, AVHRR, HIRS, MHS).
 ⁶ Macao, China receives FY-2D, FY-2E (S-VISSR) Stretched VISSR.

Member	Statio		Himawari 1. HimawariCloud 2. HimawariCast	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS
	Seoul	37.6°N, 127.0°E	1	1	
	Incheon Int. Airport	37.3°N, 126.3°E			
	Munsan	37.9°N, 126.8°E			1
	Seosan	36.8°N, 126.5°E		1	
	Pusan	35.1°N, 129.0°E			
	Pusan Kimhae Air	35.2°N, 126.9°E			
	Kwangju	35.2°N, 126.9°E			
	Taejon	36.4°N, 127.4°E			
	Kangnung	37.5°N, 130.9°E			
	Cheju	33.5°N, 126.5°E			
	Taegu	35.9°N, 128.6°E			
	Taegu/Air Traffic	35.9°N, 128.7°E			
Republic of	Chonju	35.8°N, 127.2°E			
Korea ⁷	Chongju	36.6°N, 127.4°E			
	Ullung-Do	37.5°N, 130.9°E			
	Mokpo	34.8°N, 126.4°E			
	Chunchon	37.9°N, 127.7°E			
	Masan	35.2°N, 128.6°E			
	Tongyong	34.9°N, 128.4°E			
	Inchon	37.5°N, 126.6°E			
	Huksando	34.7°N, 125.5°E			
	Suwon	37.3°N, 127.0°E			
	Sokcho	38.3°N, 128.6°E			
	Pohang	36.0°N, 129.4°E			
	Kunsan	36.0°N, 126.7°E			
	Baengnyeong-do	37.9°N, 124.6°E			
Singapore ⁸	Changi Airport	1.4°N, 104.0°E	1, 2	1	1
Thailand	Bangkok	13.7°N, 100.6°E	1, 2	1	
USA	Guam	13.4°N, 144.6°E	1	1	
Viet Nam	Hanoi	21.0°N, 105.5°E	1, 2	2	
	Ho Chi Ming City	10.5°N, 106.4°E		2	

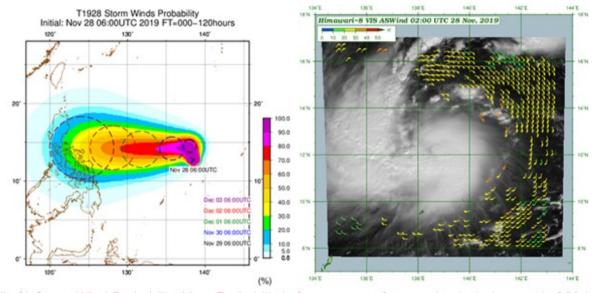
 ⁷ Republic of Korea receives AQUA (MODIS, AIRS, AMSU, AMSR-E) and TERRA (MODIS).
 ⁸ Singapore receives AQUA (MODIS), FY-2B (S-VISSR) and TERRA (MODIS).

APPENDIX 2-H

LIST OF SAREP REPORTS ISSUED BY TYPHOON COMMITTEE MEMBERS

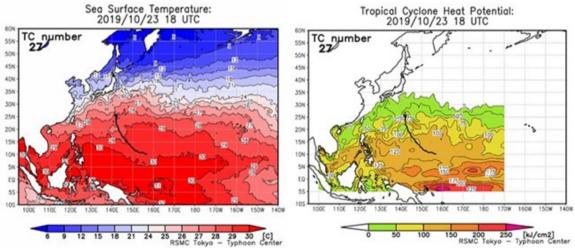
Member	Frequency	Heading in the BUFR code (FM 94)	Issuance Condition
RSMC Tokyo - Typhoon Center	8 times/day	IUCC10 RJTD	 (i) When a tropical cyclone of TS intensity or higher is located in the responsible area of the RSMC Tokyo - Typhoon Center; (ii) When a tropical depression existing in the responsible area is forecasted to have an intensity of TS or higher within 24 hours; or (iii) When an area of wind speed of 34 knots or higher caused by a tropical cyclone is forecasted to be in the responsible area within 24 hours.
Hong Kong, China	8 times/day	IUCC01 VHHH IUCC02 VHHH IUCC03 VHHH IUCC04 VHHH	When a tropical cyclone is located within 10 <u>°</u> N to 30 <u>°</u> N and 105 <u>°</u> E to 125 <u>°</u> E.
<u>China</u>	<u>8</u> <u>times/day</u>	TCPQ40 BABJ	When a tropical cyclone is located within 0°N to 50°N and 105°E to 180°E.

APPENDIX 3-A

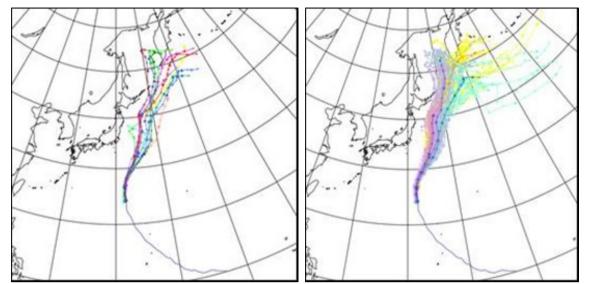

List of other products provided by RSMC Tokyo - Typhoon Center (Available at the Numerical Typhoon Prediction Website: https://tynwp-web.kishou.go.jp/)

Products	Frequency	Details
RSMC Adv	visories	
RSMC TC Advisory- Prognostic- Reasoning	At least 8 times/day 4 times/day	 RSMC Tokyo - Typhoon Center's TC analysis, track forecast and intensity forecast up to 120-hours (linked to JMA's website: https://www.jma.go.jp/en/typh/) RSMC Tokyo Tropical Cyclone Prognostic Reasoning (WTPQ)
Storm Wind Probability Map RSMC TC Advisory	4 times/day At least 8 times/day	 Probabilistic forecast map for sustained wind upward of 50-kt with forecast time of 1, 2, 3, 4 and 5 days RSMC Tokyo – Typhoon Center's TC analysis, track forecast up to- 120-hours and intensity forecast up to 72-hours (linked to JMA's website: https://www.jma.go.jp/en/typh/)
Prognostic Reasoning Graphical TC Advisory	4 times/day	 RSMC Tokyo Tropical Cyclone Prognostic Reasoning (WTPQ) Graphical TC Advisory including RSMC Tokyo – Typhoon Center's TC analysis, track and intensity forecast up to 24-hours and horizontal extent of cumulonimbus cloud and cloud top height associated with TCs potentially- affecting aviation safety (linked to Tropical Cyclone Advisory Center Tokyo- Website: https://www.data.jma.go.jp/fcd/tca/data/index.html)
Advance notice Operational Remarks		 Advance notice on TC status change from RSMC Tokyo – Typhoon Center
Graphical TC Advisory Track- Bulletin	4 times/day	 Graphical TC Advisory including RSMC Tokyo - Typhoon Center's TC analysis, track and intensity forecast up to 24-hours and horizontal extent of cumulonimbus cloud and cloud top height associated with TCs potentially affecting aviation safety (linked to Tropical Cyclone Advisory Center Tokyo Website: https://www.data.jma.go.jp/fcd/tca/data/index.html) RSMC Tokyo Tropical Cyclone Track Forecast Bulletin Track forecast by deterministic GSM (FXPQ2X) Track forecast by GEPS (FXPQ3X)
Remote se	ensing Observatio	
Satellite Analysis TC Analysis	At least 4 times/day	 Results and historical logs of RSMC Tokyo – Typhoon Center's TC analysis conducted using satellite images (Conventional Dvorak analysis and Early-stage Dvorak analysis)
Satellite imagery Satellite Microwave Products	Up to 142 times/day	 Satellite imagery of Himawari-8/9 (inked to JMA's website: https://www.jma.go.jp/en/gms/smallc.html?area=6&element=0&mode=UTC) TC snapshot images Warm-core-based TC intensity estimates Weighted consensus TC intensity estimates made using Dvorak analysis and satellite microwave warm-core-based intensity estimates
Satellite Microwave Products Radar	Every hour	 TC snapshot images Warm-core-based TC intensity estimates Weighted consensus TC intensity estimates made using Dvorak analysis and satellite microwave warm-core-based intensity estimates Radar composite imagery of the Typhoon Committee Regional Radar Network
Sea-surfac e AMV Weather Maps	Every 10 / 30 minutes 4 times/day	 AMV-based Sea-surface Wind in the vicinity of TC (linked to Meteorological Satellite Center's web site: http://www.data.jma.go.jp/mscweb/en/product/product/aswind/monitor/aswind.p hp) Weather maps for surface analysis, 24- and 48-hour forecast (linked to JMA's-website: https://www.jma.go.jp/en/g3/)
Radar Composite Imagery	Every hour 4 times/day	 Radar composite imagery of the Typhoon Committee Regional Radar Network Upper-air analysis based on GSM initial field data Streamlines at 850 and 200 hPa

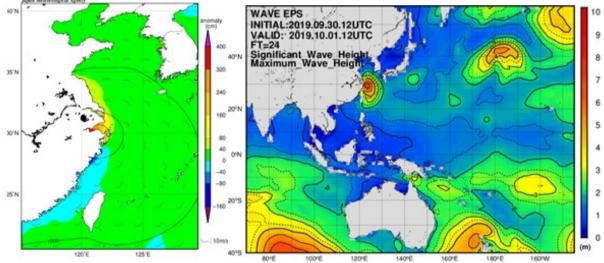
Products	Frequency	Details
Upper-Air- Analysis		 Vertical wind shear between 200 and 850 hPa Divergence at 200 hPa Vorticity at 850 hPa
Ocean Analysis	Once/day	 Sea surface temperature and difference from 24 hours ago Tropical cyclone heat potential and difference from 24 hours ago
Atmospher	ic Circulation Fo	recasting/NWP
Weather Charts TC Track- Prediction	4 times/day	 Weather maps for surface analysis, 24- and 48-hour forecast (linked to JMA's website: https://www.jma.go.jp/en/g3/) TC track prediction of deterministic NWP models from nine centers (BoM, CMA, CMC, DWD, ECMWF, KMA, NCEP, UKMO and JMA) and a related consensus TC track prediction of ensemble NWP models from four centers (ECMWF, NCEP, UKMO and JMA)
NWP Multi Center Weather Maps Charts	Twice/day	 Mean sea level pressure and 500 hPa Geopotential height (up to 72 hours at 00 UTC, up to 168 hours at 12 UTC) of deterministic NWP models from nine centers (BoM, CMA, CMC, DWD, ECMWF, KMA, NCEP, UKMO and JMA)
JMA GSM Analysis and Forecast TC Activity Prediction	4 times/day Twice/day	 Upper-air analysis and forecast data based on JMA-GSM Streamlines at 850, 500 and 200 hPa Divergence at 200 hPa Velocity potential at 200 hPa Vertical Velocity in Pressure Coordinate at 500 hPa Dew Point Depression at 600 hPa Curvature Vorticity at 850 hPa Vertical wind shear between 200 and 850 hPa Sea Level Pressure Genesis Potential Index Two- and five-day TC activity prediction maps based on ensemble NWP models from four centers (ECMWF, UKMO, NCEP and JMA) and a related consensus
MJO phase diagram	Monthly	• MJO phase and amplitude diagram and MJO Havmoller diagram (linked to JMA's web sites)
Asian Monsoon Monitoring Indices	Daily	• Time series of vertical wind shear, OLR and other indices associated with SW Asian Monsoon (linked to JMA's web sites)
Ocean Co	ndition Storm Su	irge/Waves
SST Storm- Surge- Forecasts	Once/day 4 times/day	 Sea surface temperature and its difference from 24 hours ago Distribution maps of storm surge for RSMC Tokyo – Typhoon Center's TC track- forecast and each of five TC track forecasts selected from GEPS ensemble- members and maximum storm surge among these six TC track forecasts (up to 72 hours ahead) Time-series storm surge forecast charts for RSMC Tokyo – Typhoon Center's- TC track forecast and each of five TC track forecasts selected from GEPS- ensemble members (up to 72 hours ahead)
TCHP Ocean- Wave- Forecasts	Once/day Twice/day	 Tropical cyclone heat potential and its difference from 24 hours ago Distribution maps of ensemble mean, maximum, probability of exceeding- various thresholds and ensemble spread of wave height and period based on- Wave Ensemble System (WENS) (up to 264 hours ahead) Time-series of box-and-whisker plots of wave height and period, and probability of exceeding various thresholds of wave height and period based on WENS (up to 264 hours ahead)
Numeric	al TC Prediction	
Track Forecast Bulletin	4 times/day	RSMC Tokyo Tropical Cyclone Track Forecast Bulletin Track forecast by deterministic GSM (FXPQ2X) Track forecast by GEPS (FXPQ3X)
TC Track Prediction	4 times/day	 TC track prediction of deterministic NWP models from nine centers (BoM, CMA, CMC, DWD, ECMWF, KMA, NCEP, UKMO and JMA) and a related consensus TC track prediction of ensemble NWP models from four centers (ECMWF,


Products	Frequency	Details
		NCEP, UKMO and JMA)
TC Activity Prediction	Twice/day	• Two- and five-day TC activity prediction maps based on ensemble NWP models from four centers (ECMWF, UKMO, NCEP and JMA) and a related consensus
Marine F	orecast	
Storm Surge Forecasts	4 times/day	 Distribution maps of storm surge for RSMC Tokyo - Typhoon Center's TC track forecast and each of five TC track forecasts selected from GEPS ensemble members and maximum storm surge among these six TC track forecasts (up to 72 hours ahead) Time-series storm surge forecast charts for RSMC Tokyo - Typhoon Center's TC track forecast and each of five TC track forecasts selected from GEPS ensemble members (up to 72 hours ahead)
Ocean Wave Forecasts	Twice/day	 Distribution maps of ensemble mean, maximum, probability of exceeding various thresholds and ensemble spread of wave height and period based on Wave Ensemble System (WENS) (up to 264 hours ahead) Time-series of box-and-whisker plots of wave height and period, and probability of exceeding various thresholds of wave height and period based on WENS (up to 264 hours ahead)

APPENDIX 3-A



Example of the products provided by RSMC Tokyo - Typhoon Center


(Left) Storm Wind Probability Map: Probabilistic forecast map for sustained wind upward of 50-kt with forecast time of 1, 2, 3, 4 and 5 days, to grasp the possible impact for areas of interest. (Right) Sea-surface AMV: AMV-based sea-surface wind in the vicinity of TCs estimated from Himawari-8/9 low-level AMVs. Data are available every 30 minutes for full-disk observation and every 10 minutes for Target Area observation, respectively.

(Left) Sea Surface Temperature analysed with observation data of satellites, buoys, ships. "SST > 26° C to a depth of 60 m" is one of the necessary conditions for TC development and genesis. (Right) Tropical cyclone heat potential: Total heat contents from sea surface down to the depth of the 26° C isotherm, operationally used as TC intensity guidance. Minimum threshold for rapid intensification of TC in the western North Pacific is around 40 kJ/cm².

(Left) Deterministic Track Prediction of global NWP model of BoM, MSC, CMA, DWD, KMA, UKMO, NCEP, ECMWF and JMA. Track prediction of specific NWP models can be selected for display. (Right) Ensemble Track Prediction of NCEP, UKMO, ECMWF and JMA.

(Left) Storm surge forecast derived from EPS for storm surge caused by TCs. The EPS runs for 6 possible TC tracks (RSMC Tokyo - Typhoon Center's official track forecast and five selected ensemble members that cover a major set of TC track scenarios). (Right) Ocean Wave Height produced by Wave Ensemble System of JMA.

Deterministic NWP models used in the Numerical Typhoon Prediction website							
System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Specification of (Model/Data)		
JMA deterministic Global model (GSM)	Global	TL959 (~20 km)	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	Model		
BoM deterministic Global model (ACCESS-G)	Global	Lon: 0.35° Lat: 0.23°	-	240 hours (00, 12UTC)	Data		
CMA deterministic Global model (GRAPES_GFS)	Global	0.28°	-	120 hours (00, 12, UTC)	Data		
CMC deterministic Global model (GDPS)	Global	1.0°	-	144 hours (00, 12UTC)	Data		
DWD deterministic Global model (GME)	Global	0.25°	-	174 hours (00, 12UTC)	Data		
ECMWF deterministic Global model (IFS-HRES)	Global	0.5°	-	240 hours (00, 12 UTC)	Data		
KMA deterministic Global model (GDAPS)	Global	Lon: 0.23° Lat: 0.16°	-	168 hours (00, 12UTC),	Data		
NCEP deterministic Global model (GFS)	Global	0.5°	-	192 hours (00, 06, 12, 18 UTC)	Data		
UKMO deterministic Global model	Global	Lon: 0.83° Lat: 0.56°	-	120 hours (00, 12 UTC)	Data		

Deterministic NWP models used in the Numerical Typhoon Prediction website

EPS used in the Numerical Typhoon Prediction website

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Specification of (Model/ Data)
JMA Global EPS (GEPS)	Global	TL479 (~40 km)	100	132 hours ⁹ (06, 18 UTC) 264 hours (00, 12 UTC)	27	Model
ECMWF Global EPS	Global	Only track data	-	240 hours (00, 12 UTC)	52	Data
NCEP Global EPS	Global	1.0°	-	384 hours (00, 06, 12, 18 UTC)	21	Data
UKMO Global EPS	Global	Only track data	-	168 hours (00, 06, 12, 18 UTC)	36	Data

⁹ Forecasts from initial times at 06 and 18 UTC are operated when any of the following conditions is satisfied at the initial times: (i) A tropical cyclone (TC) of tropical storm (TS) intensity or higher is present in the RSMC Tokyo-Typhoon Center's area of responsibility (0°-60°N, 100°-180°E). (ii) A TC is expected to reach TS intensity or higher in the area within the next 24 hours. (iii) A TC of TS intensity or higher is expected to move into the area within the next 24 hours.

APENDIX 3-B Analysis methods, forecasting methods and NWP for forecasting currently used by the NMSs of Typhoon Committee Members

Name of the Member: [China]

1 Tropical Cyclone Analysis Other Source Dvorak Intensity (CI, T, DT, 00, 06, 12, Dvorak EIR method (Dvorak, Satellite observational data from PT, MET number) 18 UTC 1984) FY-4 (AGRI images, GIIRS sounding data) and FY-3 vertical (Atmospheric profile), temperature other available satellite microwave and sounding data Center Position, Accuracy 00.03.06. Satellite images and other of center position, Direction 09, 12, 15, estimation methods which and speed of movement 18, 21 UTC utilize surface observations Central Pressure (CP), 00, 03, 06, (1) Conversion from Dvorak Maximum Sustained Wind 09, 12, 15, method (Dvorak, 1984) (for 18, 21 UTC speed (MSW), Maximum CP, MSW and MGW) Gust Wind speed (MGW), (2) Weather map analysis with 50 kt radii (R50), 30 kt radii utilization of all full (R30) observational data available (SYNOP, SHIP, BUOY, ASCAT, AMV including sea surface wind estimated from low-level AMV) Statistical relationship (3) between MSW and R50 selected by TC size

2 Tropical Cyclone Forecasting

Parameter	lssuance Time	Lead Time	Methods
Likelihood of development of organized convective cloud systems into TSs	00, 06, 12, 18 UTC	24 hours	 (1) Dvorak Intensity (2) 850 hPa and 200 hPa streamlines of deterministic Global NWP models and Ensemble Prediction Systems (EPSs) of major centers (e.g. GRAPES, ECMWF, NCEP and UKMO) (3) 850 hPa and 200 hPa streamlines of deterministic regional NWP models and EPS of GRAPES
Center position, Direction and speed of movement, Radius of probability circle	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	 Center position, Direction and speed of movement: (1) Simple consensus method using deterministic Global NWP models of GRAPES and other major centers such as ECMWF, NCEP and UKMO (2) Global EPSs of GRAPES, ECMWF, NCEP and UKMO as reference (3) Deterministic regional NWP models of GRAPES_TYM, Shanghai GRAPES Typhoon Model (SGTM), STI - Typhoon Ensemble Data Assimilation and Prediction System (STI-TEDAPS) as reference (4) OBEST method (a consensus method using EPSs of ECMWF, NCEP and UKMO (Dong and Zhang; 2016,Qi et al, 2014), STI Shanghai Selective Tropical Cyclone (STI-SSTC), STI- western North Pacific tropical cyclone intensity prediction scheme (STI-WIPS) Radius of probability circle: Verification results of past TC track errors according to the ensemble spread of the Global EPSs of GRAPES, ECMWF, NCEP and UKMO (Chen et al, 2018).

Parameter	lssuance Time	Lead Time	Methods
CP, MSW, MGW, R50	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	 CP, MSW and MGW: (1) Statistical and dynamical guidance (Chen et al, 2018) (2) Deterministic Global NWP models of GRAPES and other major centers such as ECMWF, NCEP and UKMO as reference (3) Deterministic Regional NWP models of GRAPES as reference R50: MSW-R50 development curve determined by TC size

3 NWP Systems in Operational Use

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
GRAPES-GFS	Global	0.25°	60	240h (00,06,12,18 UTC)	-	Own
GRAPES-GEPS	Global	0.5°	60	240h (00,12UTC)	31	Own
GRAPES_TYM	40-180.°E; 15°S-60.0°N	0.09°	68	120h (00,06,12,18 UTC)	-	Own
GRAPES-REPS	70-145°E;15-6 5°N	0.1°	50	84h (00,12UTC)	15	Own
GRAPES-MESO- 3km	70-145°E 10-60°N	0.03°	50	36h (00,06,12,18 UTC)	_	Own
Shanghai GRAPES Typhoon Model (SGTM)	West Pacific Ocean and South China Sea	0.1°	50	up to 72h, interval is 6h	_	Own
STI - Typhoon Ensemble Data Assimilation and Prediction System (STI-TEDAPS)	West Pacific Ocean and South China Sea	27 km	35	up to 72h, interval is 6h	21	Own
TRAMS	Longitude: (70°E-160°E) Latitude: (0.8N-54.8°N)	0.09° (horizontal grids: 1001 x 601)	65	168hours (00,12 UTC) 72hours (06,18 UTC)	_	Own

Reference

Chen G. M., Lei X T, Zhang X P, 2018. Verification of tropical cyclone operational forecast in 2017[R]. Ha Noi : UNESCAP/WMO Typhoon Committee:19.

Dong L and Zhang F Q, 2016. OBEST: an observation based ensemble sub-setting technique for tropical cyclone track prediction [J]. Wea Forecasting, 31(1): 57-70.

Dvorak V. F., 1984: Tropical cyclone intensity analysis using satellite data, NOAA Technical Report, 11.

Qi L b, Yu H and Chen P Y 2014. Selective ensemble-mean technique for tropical cyclone track forecast by using ensemble prediction systems [J]. Q. J. R. Meteorol. Soc.140, 805-813.

Name of the Member: [Hong Kong, China]

1 Tropical Cyclone Analysis

Name	UI LIIE	member.	lineina	Rong,	Ciiiiaj

ParameterTimeMathodsOther Sources1. Position, direction and speed of movementSynoptic hour in general (also subject to observation to observation1. Position, direction and speed of movement: • Satellite imagery • Radar imagery (reflectivity, zero-isodop on Doppler velocity)(a) ASCAT observations for analysing position, intensity and wind radii.2. Intensity (maximum sustained 10-minute mean wind near TC centre).Weather observation from synoptic stations, automatic weather stations, oil rigs and weather buoys(b) NRL Microwave images for analysing position. (c) NOAA3. Central pressure, Wind radii (of strong, gale, storm and hurricane force winds)Central pressure: • Pressure observation from synoptic stations, automatic weather stations, oil rigs and weather buoys4. Wind radii (of strong, gale, storm and hurricane force winds)4. Wind radii (of strong, gale, storm and hurricane force winds)4. Wind radii (of strong, gale, strong, gale
 direction and speed of movement in general (also subject to observation reception time) Intensity reception time) Net and the stations, automatic weather stations, oil rigs and weather buoys Intensity: Intensity: Dvorak analysis on satellite imagery Radar imagery (Peflectivity, zero-isodop on Doppler velocity) Weather observation from synoptic stations, automatic weather stations, oil rigs and weather buoys Intensity: Dvorak analysis on satellite imagery Radar imagery (Doppler wind) Weather observation from synoptic stations, automatic weather stations, oil rigs and weather buoys Dropsonde observations from reconnaissance flight Central pressure Pressure observation from synoptic stations, oil rigs and weather buoys Central pressure: Pressure observation from synoptic stations, automatic weather stations, oil rigs and weather buoys Wind radii (of strong, gale, storm and hurricane force winds) Wind radii (of strong, gale, storm and hurricane Weather observation from synoptic stations, automatic weather stations, oil rigs and weather buoys Wind radii: Weather observation from synoptic stations, oil rigs and weather buoys
Dropsonde observations from

2 Tropical Cyclone Forecasting

Parameter	Issuance Time	Lead Time	Methods				
Track	Around 1 to 2	Forecast	Weighted ensemble forecast track is generated from 5				
	hour from the	positions for:	NWP guidance including JMA, UKMO, NCEP, ECMWF and				
	synoptic hour	T + 24 h	ECMWF EPS. The ensemble forecast track forms the				
	(T)	T + 48 h	basis for formulating the operational TC forecast track.				
		T + 72 h	The operational TC forecast track may be slightly adjusted				
		T + 96 h	considering other NWP guidance (e.g. EPS products from				
		T + 120 h	CMC, KMA, JMA, NCEP and UKMO), real-time				
			observations and past NWP performance.				
Intensity	Around 1 to 2	Forecast	The intensity forecast makes reference to the NWP intensity				
(maximum	hour from the	intensity for:	guidance products from ECMWF, JMA, NCEP, UKMO,				
sustained	synoptic hour	T + 24 h	NOAA HWRF, TWRF, and Meso-NHM of HKO.				
wind)	(T)	T + 48 h	Factors such as rapid intensification chance deduced from				
		T + 72 h	statistical dynamical TC intensity forecast model, and				
		T + 96 h	environmental parameters such as sea surface				
		T + 120 h	temperature, wind shear, the ocean heat potential and land				
			interactions are also considered in formulating the intensity				
			forecast.				

System	Domain	Horizontal Resolution	Number of Vertical	Forecast Range (Initial	Number of Ensemble	Run by (own/other
ECMWF deterministic Global model	Global	0.1°	Levels -	time) 240 hours (00, 12 UTC) 90 hours (06, 18 UTC)	Members N. A.	centers) Other
ECMWF Global EPS	Global	Only TC track and intensity data	-	240 hours (00, 12 UTC)	52	Other
ECMWF Global EPS	Global	Ensemble member forecasts on surface and isobaric levels with horizontal resolution of 0.25 / 0.5° covering selected domains	-	360 hours	52	Other
NCEP deterministic Global model	Global	0.25°	-	384 hours (00, 06, 12, 18 UTC)	N.A.	Other
NCEP Global EPS	Global	Only TC track and intensity data	-	384 hours (00, 06, 12, 18 UTC)	21	Other
NCEP deterministic regional model (HWRF)	Domain based on the initial position of the TC	Only TC track and intensity data	-	Up to 126 hours (00, 06, 12, 18 UTC)	N.A.	Other
JMA deterministic Global model	Global	0.25°	-	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	N.A.	Other
JMA Global EPS (GEPS)	Global	Only TC track and intensity data	-	132 hours	27	Other
UKMO deterministic Global model	Global	Lon: 0.23° Lat: 0.16°	-	144 hours (00, 12 UTC)	N.A.	Other
UKMO Global EPS	Global	Only TC track and intensity data	-	192 hours (00, 06, 12, 18 UTC)	36	Other
CMA deterministic Global model	Global	0.25°	-	240 hours (00, 12 UTC)	N.A.	Other
CMA Global EPS	Global	Only TC track and intensity data	-	240 hours (00, 12 UTC)	16	Other
CMC deterministic Global model	Global	0.24°	-	240 hours (00, 12 UTC)	N.A.	Other
CMC Global EPS	Global	Only TC track data	-	240 hours (00, 12 UTC)	21	Other
KMA deterministic Global model	Global	0.35°	-	240 hours (00, 12 UTC)	N.A.	Other

3 NWP Systems in Operational Use

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial time)	Number of Ensemble Members	Run by (own/other centers)
Meso-NHM	NW: 38.61°N 62.05°E NE: 37.48°N 168.13°E SW: 0.91°N 84.42°E SE: 0.39°N 145.23°E	10 km	50	72 hours	1	Own
RAPIDS-NHM	NW: 25.01°N 111.22°E NE: 25.01°N 117.13°E SW: 19.54°N 111.22°E SE: 19.54°N 117.13°E	2 km	60	15 hours	1	Own

Meso-NHM and RAPIDS-NHM

Name of the method:

Non-Hydrostatic Model (NHM)

Description of the method:

HKO operates the NHM system based on JMA-NHM (Saito *et al.* 2006) with horizontal resolution at 10-km and 2-km to provide forecasts up to 72 hours and 15 hours ahead respectively (Wong 2010).

In NHM, a 3-dimensional variational data assimilation (3DVAR) system is used to generate the initial condition on model levels using the following meteorological observations:

(^)	ОТС	•
(A)	GIS	2

SYNOP, SHIP and BUOY	synoptic stations, ship and buoy data
TEMP and PILOT	radiosonde and pilot data
AMDAR and AIREP	aircraft data
AMV	atmospheric motion vectors from Himarwai-8
ATOVS	retrieved temperature profiles from NOAA
Ocean surface wind	scatterometer wind retrieval data from ASCAT,
	RAPID-SCAT and HY2A
Dropsonde	tropical cyclone wind observations from DOTSTAR
IASI	temperature and humidity retrieval profile data from
	EUMETSAT Metop IASI (Infrared Atmospheric
	Sounding Interferometer)

(B) <u>Regional data exchange</u> Data from automatic weather stations over the south China coastal areas

- (C) Local data
 - (i) Automatic weather station data
 - (ii) Wind profiler data
 - (iii) Doppler weather radar data
 - (iv) Radar retrieved wind data (u and v) on 1-5 km levels based on multiple weather radars in Hong Kong and the Pearl River Delta region, China
 - (v) GNSS total precipitable water vapour

The 3DVAR analysis for 10-km NHM is produced eight times a day at 00, 03, 06, 09, 12, 15, 18, and 21 UTC. Hourly analysis is performed for the 2-km NHM.

	Fully compressible non-hydrostatic governing equations				
Basic equations					
Vertical coordinates	Terrain following height coordinates system				
Forecast	wind (u,v,w), 3-dimensional pressure, potential temperature, specific				
parameters	humidity of water vapour, cloud water, cloud ice, rain water, hail/graupel				
	and snow				
Map projection	10-km NHM: Lambert Conformal				
	2-km NHM: Mercator				
Number of grid	10-km NHM: 841x515, 50 levels				
points	2-km NHM: 305x305, 60 levels				
Corners of the	10-km NHM:				
model domain	NW: 38.61°N 62.05°E				
	NE: 37.48°N 168.13°E				
	SW: 0.91°N 84.42°E				
	SE: 0.39°N 145.23°E				
	2-km NHM:				
	NW: 25.01°N 111.22°E				
	NE: 25.01°N 117.13°E				
	SW: 19.54°N 111.22°E				
	SE: 19.54°N 117.13°E				
Forecast range	10-km NHM: 72 hours				
r orcoust runge	2-km NHM: 15 hours				
Initial condition	Analysis from NHM 3DVAR on model levels				
Boundary condition	For 10-km NHM, 3-hourly interval boundary data including horizontal				
Boundary condition	wind, temperature, relative humidity, geopotential height and surface				
	pressure from ECMWF IFS forecast at horizontal resolution of 0.125				
	degree in latitude/longitude and on 25 pressure levels (1000, 950, 925,				
	900, 850, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30,				
	20, 10, 7, 5, 3, 2 and 1 hPa)				
	For 2-km NHM, 3-hourly interval boundary data provided from ECMWF				
	IFS forecasts				
Meeting					
Nesting	One-way nesting				
configuration	LICOR OTODORO (20 second data are althed to 4.5 times of herioritation				
Topography and	USGS GTOPO30 (30 second data smoothed to 1.5 times of horizontal				
land-use	resolution)				
	USGS Global Land Cover Characterization (GLCC) 30 second data				
Dynamics	Non-hydrostatic governing equations solved by time-splitting				
	horizontal-explicit-vertical-implicit (HEVI) scheme using 4-order centred				
	finite difference in flux form				
Moisture process	Tiedtke based bulk mass flux convective parameterization (HKO version)				
	Three ice bulk microphysics scheme				
Surface process	Flux and bulk coefficients: Land: Beljaars and Holtslag (1991)				
	Sea: Wong, Sumdin and Lai (2010)				
	Stomatal resistance and temporal change of wetness included				
	4-layer soil model to predict ground temperature and surface heat flux.				
Turbulence closure	Mellor-Yamada-Nakanishi-Niino Level 2.5 (MYNN-2.5) (Nakanishi and				
model and planetary	Niino, 2004) with partial condensation scheme (PCS) and implicit vertical				
boundary layer	turbulent solver. Height of PBL calculated from virtual potential				
process	temperature profile.				
P.00000					

Specifications of the forecast model are given in the following table:

Radiation	Long wave radiation process follows Kitagawa (2000)
	Short wave radiation process using Yabu and Kitagawa (2005)
	Prognostic surface temperature included; Cloud fraction determined from
	PCS.

Reference

Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization and land surfaces in atmospheric models. *J. Appl. Meteor.*, **30**, 327-341.

ECMWF, 2015: Convection. IFS Documentation CY41R1, Part IV, Chapter 6, ECMWF, 73-90. [Available at

http://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-docume ntation]

Kitagawa, H., 2000: Radiation process. *NPD Report No. 46*, Numerical Prediction Division, JMA, 16-31. (in Japanese)

Nakanishi, M. and H. Niino, 2004: Improvement of the Mellor-Yamada level 3 model with condensation physics: Its de-sign and verification. *Bound.-Layer Meteor.*, **112**, 1-31.

Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito, and Y. Yamazaki, 2006: The Operational JMA Nonhydrostatic Mesoscale Model. *Mon. Wea. Rev.*, **134**, 1266-1298.

Wong, W.K., 2010: Development of Operational Rapid Update Non-hydrostatic NWP and Data Assimilation Systems in the Hong Kong Observatory, *3rd International Workshop on Prevention and Mitigation of Meteorological Disasters in Southeast Asia*, 1-4 March 2010, Beppu, Japan. [Reprint available at <u>http://www.hko.gov.hk/publica/reprint/r882.pdf</u>]

Wong, W.K., S. Sumdin and E.S.T. Lai, 2010: Development of Air-Sea Bulk Transfer Coefficients and Roughness Lengths in JMA Non-hydrostatic Model and Application in Prediction of an Intense Tropical Cyclone. *SOLA*, **6**, 065-068.

Yabu, S., S. Murai, and H. Kitagawa, 2005: Clear-sky radiation scheme. *NPD Report No. 51*, Numerical Prediction Division, JMA, 53-64. (in Japanese)

Name of the Member: [Japan]

1 Tropical Cyclone Analysis

1 Tropical Cyclone Analysis							
Parameter	Time	Methods	Other Sources				
Dvorak Intensity (CI, T,	00, 06, 12, 18	Dvorak EIR method (Dvorak, 1984)					
DT, PT, MET number)	UTC	and Early Dvorak Analysis (EDA:					
		Tsuchiya et al., 2001 and Kishimoto,					
		2008)					
Center Position,	00, 03, 06, 09,	Satellite images and other estimation					
Accuracy of center	12, 15, 18, 21	methods which utilize surface					
position, Direction and	UTC	observations					
speed of movement							
Central Pressure (CP),	00, 03, 06, 09,	(1) Conversion from Dvorak method	CPs estimated from TC				
Maximum Sustained	12, 15, 18, 21	(Koba et al., 1991) (for CP, MSW	warm core intensities				
Wind speed (MSW),	UTC	and MGW)	observed by the				
Maximum Gust Wind		(2) Weather map analysis with full	Advanced Microwave				
speed (MGW), 50 kt radii		utilization of all observational data	Sounding Unit-A				
(R50), 30 kt radii (R30)		available (SYNOP, SHIP, BUOY,	(AMSU-A) (Oyama,				
		ASCAT, AMV including sea	2014) and MSW				
		surface wind estimated from	estimated from				
		low-level AMV (Nonaka et al.,	multi-channel				
		2019), etc.)	microwave imager data				
		(3) Statistical relationship between	(Sakuragi et al., 2014,				
		MSW and R50 selected by TC	Hoshino and				
		size	Nakazawa, 2007)				

2 Tropical Cyclone Forecasting

Parameter	lssuance Time	Lead Time	Methods
Likelihood of development of organized convective cloud systems into TSs	00, 06, 12, 18 UTC	24 hours	 EDA EDA 850 hPa and 200 hPa streamlines of deterministic Global NWP models and Ensemble Prediction Systems (EPSs) of major centers (e.g. JMA, ECMWF, NCEP and UKMO) 850 hPa and 200 hPa streamlines of deterministic regional NWP models and EPS of JMA
Center position, Direction and speed of movement, Radius of probability circle	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	 Center position, Direction and speed of movement: (1) Simple consensus method using deterministic Global NWP models of JMA and other major centers such as ECMWF, NCEP and UKMO (2) Global EPSs of JMA, ECMWF, NCEP and UKMO as reference (3) Deterministic regional NWP models of JMA and NCEP as reference Radius of probability circle: Verification results of past TC track errors according to the ensemble spread of the Global EPSs of JMA, ECMWF, NCEP and UKMO (Fukuda and Yamaguchi, 2019).
CP, MSW, MGW, R50	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	 CP, MSW and MGW: (1) Statistical and dynamical guidance (TIFS: Yamaguchi et al., 2018) (2) Deterministic Global NWP models of JMA and other major centers such as ECMWF, NCEP and UKMO as reference (3) Deterministic Regional NWP models of JMA and NCEP as reference R50: MSW-R50 development curve determined by TC size

3 NWP Syste	ins in Operat	iolial Use				
System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
JMA deterministic Global model	Global	TL959 (~20 km)	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Own
JMA Global EPS	Global	TL479 (~40 km)	100	132 hours ¹⁰ (06, 18 UTC) 264 hours (00, 12 UTC)	27	Own
JMA deterministic regional model (Meso-scale Model: MSM)	Japan and its surrounding areas	5 km (horizontal grids: 817 x 661)	76	39 hours (03, 06, 09, 15, 18, 21 UTC) 51 hours (00, 12 UTC)	-	Own
JMA regional EPS	Japan and its surrounding areas	5 km (horizontal grids: 817 x 661)	76	39 hours (00, 06, 12, 18 UTC)	21	Own
JMA deterministic regional model (Local Forecast Model: LFM)	Japan and its surrounding areas	2 km (horizontal grids: 1531 x 1301)	58	10 hours (Every hour)	-	Own
ECMWF deterministic Global model	Global	0.5°	-	240 hours (00, 12 UTC)	-	Other
ECMWF Global EPS	Global	Only track data	-	240 hours (00, 12 UTC)	52	Other
NCEP deterministic Global model	Global	0.5°	-	192 hours (00, 06, 12, 18 UTC)	-	Other
NCEP Global EPS	Global	1.0°	-	384 hours (00, 06, 12, 18 UTC)	21	Other
NCEP deterministic regional model (HWRF)	Domain based on the initial position of the TC	Only track and intensity data	-	Up to 126 hours (00, 06, 12, 18 UTC)	-	Other
UKMO deterministic Global model	Global	Lon: 0.83° Lat: 0.56°	-	120 hours (00, 12 UTC)	-	Other
UKMO Global EPS	Global	Only track data	-	168 hours (00, 06, 12, 18 UTC)	36	Other

3 NWP Systems in Operational Use

Reference

Dvorak V. F., 1984: Tropical cyclone intensity analysis using satellite data, NOAA Technical Report, 11.

Fukuda, J. and M. Yamaguchi, 2019: Determining Probability-Circle Radii of Tropical Cyclone Track Forecasts with Multiple Ensembles, *RSMC Tokyo - Typhoon Center Technical Review*, No. **21**.

Hoshino, S. and T. Nakazawa, 2007: Estimation of Tropical Cyclone's Intensity Using TRMM/TMI Brightness Temperature Data, *Journal of the Meteorological Society of Japan*, Vol. **85**, No. 4, 437 - 454.

¹⁰ Forecasts from initial times at 06 and 18 UTC are operated when any of the following conditions is satisfied at the initial times: (i) A tropical cyclone (TC) of tropical storm (TS) intensity or higher is present in the RSMC Tokyo-Typhoon Center's area of responsibility (0°-60°N, 100°-180°E). (ii) A TC is expected to reach TS intensity or higher in the area within the next 24 hours. (iii) A TC of TS intensity or higher is expected to move into the area within the next 24 hours.

Japan Meteorological Agency, 2019: Outline of the Operational Numerical Weather Prediction at the Japan Meteorological Agency, Appendix to WMO Technical Progress Report on the Global Data-processing and Forecasting System and Numerical Weather Prediction (http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2019-nwp/index.htm).

Kishimoto, K., 2008: Revision of JMA's Early Stage Dvorak Analysis and Its Use to Analyze Tropical Cyclones in the Early Developing Stage, *RSMC Tokyo - Typhoon Center Technical Review*, No. **10**, 1 - 12.

Kishimoto, K., M. Sasaki, and M. Kunitsugu, 2013: Cloud Grid Information Objective Dvorak Analysis (CLOUD) at the RSMC Tokyo - Typhoon Center, *RSMC Tokyo - Typhoon Center Technical Review*, No. **15**, 1 - 15.

Koba, H., T. Hagiwara, S. Osano and S. Akashi, 1991: Relationships between CI Number and Minimum Sea Level Pressure/Maximum Wind Speed of Tropical Cyclones, *Geophysical Magazine*, Vol. **44**, No. 1, 15 - 25.

Nonaka, K., S. Nishimura and Y. Igarashi, 2019: Utilization of Estimated Sea Surface Wind Data Based on Himawari-8/9 Low-level AMVs for Tropical CycloneAnalysis, *RSMC Tokyo - Typhoon Center Technical Review*, No. **21**.

Oyama, R., 2014: Algorithm and Validation of a Tropical Cyclone Central Pressure Estimation Method Based on Warm Core Intensity as Observed Using the Advanced Microwave Sounding Unit-A (AMSU-A), *RSMC Tokyo - Typhoon Center Technical Review*, No. **16**.

Sakuragi, T., S. Hoshino, N. Kitabatake, 2014: Development and Verification of a Tropical Cyclone Intensity Estimation Method Reflecting the Variety of TRMM/TMI Brightness Temperature Distribution, *RSMC Tokyo - Typhoon Center Technical Review*, No. **16**.

Tsuchiya, A., T. Mikawa and A. Kikuchi, 2001: Method of Distinguishing between Early Stage Cloud Systems that Develop into Tropical Storms and Ones that Do Not, *Geophysical Magazine Series 2*, Vol. **4**, Nos. 1 - 4, 49 - 59.

Yamaguchi, M., H. Owada, U. Shimada, M. Sawada, T. Iriguchi, K. D. Musgrave and M. DeMaria, 2018: Tropical Cyclone Intensity Prediction in the Western North Pacific Basin Using SHIPS and JMA/GSM., *Scientific Online Letters on the Atmosphere*, Vol. **14**, 138 - 143, doi:10.2151/sola.2018-024.

Name of the Member: [Macao, China]

1 Tropical Cyclone Analysis

i ilopioal ogololio /	linaryoio		
Parameter	Time	Methods	Other Sources
Dvorak Intensity (CI, T,	00, 06, 12,	Dvorak EIR method (Dvorak, 1984)	1
DT, PT, MET number)	18 UTC		
Center Position, Direction and speed of movement	00, 06, 12, 18 UTC	Satellite images , radar observations and other estimation methods which utilize surface observations	1
Central Pressure (CP), Maximum Sustained Wind speed (MSW)	00, 06, 12, 18 UTC	 Conversion from Dvorak method (Koba et al., 1991) (for CP and MSW) Weather map analysis with full utilization of all observational data available (SYNOP, BUOY) 	/

2 Tropical Cyclone Forecasting

Parameter	lssuance Time	Lead Time	Methods
Center position, Direction and speed of movement	00, 06, 12, 18 UTC	24, 48, 72 hours	 Simple consensus method using deterministic NWP models of CMA, ECMWF, JMA and NCEP Global EPSs of ECMWF, JMA and NCEP as reference

3 NWP Systems in Operational Use

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
JMA deterministic Global model (GSM)	Global	TL959 (~50 km)	11	84 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Other
ECMWF deterministic Global model	Global	0.25°	-	240 hours (00, 12 UTC)	-	Other
ECMWF Global EPS	Global	Only track data	-	240 hours (00, 12 UTC)	50 members 1 high resolution 1 control	Other
NCEP deterministic Global model	Global	0.25°	-	240 hours (00, 06, 12, 18 UTC)	-	Other
NCEP Global EPS	Global	Only track data	-	-	-	Other

Name of the Member: [Malaysia]

1 Tropical Cyclone Analysis

Parameter	Time	Methods	Other Sources
Center Position,	00, 03, 06,	Satellite images, NWP	TC information such as central
Accuracy of center position, Direction & speed of movement	09, 12, 15, 18, 21 UTC	products and other estimation methods which utilize surface	pressure, maximum sustained wind speed, maximum gust wind speed, R50 (50 kt radii), R30 (30 kt radii) from
		observations	RSMC Tokyo

2 Tropical Cyclone Forecasting

		Ĭ.	
Parameter	Issuance Time	Lead Time	Methods
position, distance	10, 13, 16,	6, 12, 18, 24 hours	Track (center position, distance from nearest town, direction and speed of movement) refer to RSMC-Tokyo, Japan for South China Sea and Northwest Pacific region, and RSMC-New Delhi, India for Bay of Bengal region.

3 NWP Systems in Operational Use

	ins in Operation					
System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
Mesoscale Deterministic Model:	[9 km]: Lon: 82.27 - 135.18°E	[9 km]: 655 x 479	51	168 hours (00, 06, 12,	-	Own
WRF driven by	Lat: 5.60°S -	[3 km]:		18UTC)		
NCEP GFS model	31.34°N	886 x 442				
	[3 km]: Lon: 97.15 - 121.03°E Lat: 3.45°S - 8.39°N	[1 km]: 2197 x 772				
	[1 km]: Lon: 99.55 - 119.39 °E Lat: 0.53 – 7.44 °N					
Mesoscale	[9 km]:	[9 km]:	51	60	-	Own
Deterministic Model:	Lon: 82.27 - 135.18°E	655 x 479		(00, 06, 12, 18UTC)		
WRF driven by	Lat: 5.60°S -	[3 km]:		18010)		
UKMO model	31.34°N	886 x 442				
	[3 km]: Lon: 97.15 - 121.03°E Lat: 3.45°S - 8.39°N	[1 km]: 2197 x 772				
	[1 km]: Lon: 99.55 -119.39°E Lat: 0.53					
Mesoscale	-7.44 °N Lon: 97.93	[12 km]:	28	96 hours	_	Own
Ensemble	-121.45°E	220 x 130	20	(00, 12UTC)		C witt
Prediction	Lat: 1.77°S -			· · · · · · · · · · · · · · · · · · ·		
System:	11.95°N					
10-member						
WRF driven by NCEP GFS						
	1	1				

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)		Run by (own/other centers)
ECMWF deterministic Global model	Global	0.5°	-	240 hours (00, 12 UTC)	-	Other
NCEP deterministic Global model	Global	0.5°	-	192 hours (00, 06, 12, 18 UTC)	-	Other
JMA deterministic Global model (GSM)	Global	TL959 (~20 km)	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Other

Name of the Member: [Philippines]

1 Tropical Cyclone Analysis

DetrantelarTimeMethodsOther SourcesDvorak Intensity (DT, PT, MET, FT and CI numbers)00, 06, 12, 18 UTCDvorak EIR method (Dvorak 1984) Early-stage Dvorak Analysis (Tsuchiya et al. 2001; Kishimoto 2008)Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCenter Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 18, 21 UTCEstimation of low-level circulation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from NASU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction websiteRadius of 30-kt, Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website ClMSS real-time wind radii estimates based or korffa ot (2016)	T Hopical Oyeic			
(DT, PT, MET, FT and CI numbers)18 UTC1984) Early-stage Dvorak Analysis (Tsuchiya et al. 2001; Kishimoto 2008)Numerical Typhoon Prediction website or GTS CIMSS Advanced Dvorak Technique (ADT) (Olander and Velden 2007)Center Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 09, 12, 15, 18, 21 UTCEstimation of low-level circulation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).• Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (GUST),00, 03, 06, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website e Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction websiteRadius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website Colone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS Statellite on and velden 2010) Ciems statellite wind radii estimates based	Parameter			
and CI numbers)Early-stage Dvorak Analysis (Tsuchiya et al. 2001; Kishimoto 2008)GTS CIMSS Advanced Dvorak Technique (ADT) (Olander and Velden 2007)Center Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 18, 21 UTCEstimation of low-level circulation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction websiteRadius of 30-kt, Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)BO, 03, 06, Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea sufface winds estimated from low-level AMV (Nonaka et al. 2018) via Numerical Typhoon Prediction websiteRadius of 30-kt, Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea sufface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multi	Dvorak Intensity	00, 06, 12,	Dvorak EIR method (Dvorak	Satellite fix bulletins from other NMSs via
Center Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 09, 12, 15, 18, 21 UTCEstimation of low-level circulation center using a scans, and surface observations (SYNOP, SHIP, BUOY).CIMSS Advanced Dvorak Technique (ADT) (Olander and Velden 2007)Central Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCEstimation of low-level circulation center using a scans, and surface observations (SYNOP, SHIP, BUOY).• Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(DT, PT, MET, FT	18 UTC		2 I I I I I I I I I I I I I I I I I I I
Center Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 09, 12, 15, 18, 21 UTCEstimation of low-level circulation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).• Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of C1 number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website (IMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	and CI numbers)		Early-stage Dvorak Analysis	GTS
Center Position (PSTN), Movement Speed and Direction (MOVE)00, 03, 06, 09, 12, 15, 18, 21 UTCEstimation of low-level circulation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).• Satellite fix bulletins from other NMSs via Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991)PRES estimates from warm core intensity observation of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website et al. 2016) via Numerical Typhoon Prediction websiteRadius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based			(Tsuchiya et al. 2001;	CIMSS Advanced Dvorak Technique (ADT)
(PSTN), Movement Speed and Direction (MOVE)09, 12, 15, 18, 21 UTCcirculation center using a combination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).Numerical Typhoon Prediction website or GTSCentral Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based			Kishimoto 2008)	(Olander and Velden 2007)
Movement Speed and Direction (MOVE)18, 21 UTCcombination of satellite images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).GTS CIMSS Automated Rotational Center Hurricane Eye Retrieval (ARCHER) (Wimmers and Velden 2010)Central Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Center Position	00, 03, 06,	Estimation of low-level	Satellite fix bulletins from other NMSs via
and Direction (MOVE)images, weather radar scans, and surface observations (SYNOP, SHIP, BUOY).CIMSS Automated Rotational Center Hurricane Eye Retrieval (ARCHER) (Wimmers and Velden 2010)Central Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTC00, 03, 06, Og, 12, 15, 18, 21 UTCPRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(PSTN),	09, 12, 15,	circulation center using a	Numerical Typhoon Prediction website or
(MOVE)scans, and surface observations (SYNOP, SHIP, BUOY).Hurricane Eye Retrieval (ARCHER) (Wimmers and Velden 2010)Central Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 18, 21 UTCWeather map analysis using al available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Movement Speed	18, 21 UTC	combination of satellite	GTS
Central Pressure (PRES), Maximum Sustained Winds (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	and Direction		images, weather radar	CIMSS Automated Rotational Center
Central Pressure (PRES), Maximum Sustained Winds (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(MOVE)		scans, and surface	Hurricane Eye Retrieval (ARCHER)
Central Pressure (PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),00, 03, 06, 09, 12, 15, 18, 21 UTCConversion of CI number to PRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)PRES estimates from warm core intensity observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based			observations (SYNOP, SHIP,	(Wimmers and Velden 2010)
(PRES), Maximum Sustained Winds (MXWD), Maximum Gust (GUST),09, 12, 15, 18, 21 UTCPRES and MXWD (Koba et al. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)observations of Advanced Microwave Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based			BUOY).	`````
Maximum Sustained Winds (MXWD), Maximum Gust (GUST),18, 21 UTCal. 1991) Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sounding Unit (AMSU) (Oyama 2014) via Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Central Pressure	00, 03, 06,	Conversion of CI number to	PRES estimates from warm core intensity
Sustained Winds (MXWD), Maximum Gust (GUST),Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction websiteRadius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction websiteRadius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(PRES),	09, 12, 15,	PRES and MXWD (Koba et	observations of Advanced Microwave
Sustained Winds (MXWD), Maximum Gust (GUST),Conversion of MXWD to GUST (Harper et al. 2010) Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Numerical Typhoon Prediction website • Weighted average of PRES analyses from Dvorak, AMSU and ATMS (Oyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Maximum	18, 21 UTC	al. 1991)	Sounding Unit (AMSU) (Oyama 2014) via
Maximum Gust (GUST),Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)from Dvorak, AMSU and ATMS (Öyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Sustained Winds		Conversion of MXWD to	
Maximum Gust (GUST),Weather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)from Dvorak, AMSU and ATMS (Öyama et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(MXWD),		GUST (Harper et al. 2010)	Weighted average of PRES analyses
(GUST), (GUST),all available observation data (SYNOP, SHIP, BUOY, ASCAT)et al. 2016) via Numerical Typhoon Prediction website CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)Radius of 30-kt, 50-kt and 64-kt Winds (R30, R50, R64)00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Maximum Gust		Weather map analysis using	
Radius of 30-kt, 50-kt and 64-kt00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)R64)09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	(GUST),		all available observation data	
Radius of 30-kt, 50-kt and 64-kt00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)CIMSS Satellite Consensus (SATCON) (Herndon and Velden 2018)R64)09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based			(SYNOP, SHIP, BUOY,	Prediction website
Radius of 30-kt, 50-kt and 64-kt00, 03, 06, 09, 12, 15, 18, 21 UTCWeather map analysis using all available observation data (SYNOP, SHIP, BUOY, ASCAT)Sea surface winds estimated from low-level AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based				CIMSS Satellite Consensus (SATCON)
50-kt and 64-kt Winds (R30, R50, R64)09, 12, 15, 18, 21 UTCall available observation data (SYNOP, SHIP, BUOY, ASCAT)AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based				
50-kt and 64-kt Winds (R30, R50, R64)09, 12, 15, 18, 21 UTCall available observation data (SYNOP, SHIP, BUOY, ASCAT)AMV (Nonaka et al. 2019) via Numerical Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Radius of 30-kt,	00, 03, 06,	Weather map analysis using	Sea surface winds estimated from low-level
Winds (R30, R50, R64)18, 21 UTC ASCAT)(SYNOP, SHIP, BUOY, ASCAT)Typhoon Prediction website NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	50-kt and 64-kt		all available observation data	AMV (Nonaka et al. 2019) via Numerical
R64) ASCAT) NOAA/NESDIS Multiplatform Tropical Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	Winds (R30, R50,		(SYNOP, SHIP, BUOY,	
Cyclone Surface Winds Analysis (MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based	R64)			
(MTCSWA) (Knaff and DeMaria 2010) CIMSS real-time wind radii estimates based				
CIMSS real-time wind radii estimates based				
on Knoff et al. (2016)				
				on Knaff et al. (2016)

2 Tropical Cyclone Forecasting

Parameter	lssuance Time	Lead Time	Methods
PSTN, MOVE	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	Simple and selective (subjective) consensus method using global deterministic and EPS models of major centers via Numerical Typhoon Prediction website Global EPSs of NCEP, ECMWF, JMA and UKMO via Numerical Typhoon Prediction website as reference Regional deterministic NWP models of PAGASA, NCEP, and HKO as reference Analysis of environmental steering using actual 00 and 12 UTC upper-air charts (single layer approach) and CIMSS satellite AMV-derived deep-layer mean streamlines (Velden and Leslie 1991; Velden 1993)
Category (i.e. TD, TS, STS, TY, STY, LOW, ETC)	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	Bias-corrected intensity prediction using weighted analog technique (Tsai and Elsberry 2014) as baseline intensity guidance Global deterministic models from major NWP centers via GTS as reference Regional deterministic NWP models of PAGASA, NCEP, and HKO as reference
Radius of 70% Probability Circle	00, 06, 12, 18 UTC	24, 48, 72, 96, 120 hours	Based on the direct positional error corresponding to cumulative ratio of 70% over the last 5 typhoon seasons.

If landfalling or passing to within 100 km of Philippine coastline, additional forecasts are made at 03, 09, 15, and 21 UTC.

System	Domain	Horizontal Resolution	Number of Vertical Level	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
PAGASA Regional Deterministic Model (WRF-ARW)	3°N-25°N 115°E-13 5°E	12 km (182 x 214 grids)	42	144 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC)	-	Own
PAGASA Regional Deterministic Model (WRF-ARW)	5°N-21°N 116°E-12 7°E	3 km (361 x 593 grids)	42	48 hours (00, 03, 06, 09, 12, 15, 18, 21 UTC)	-	Own
JMA Global Deterministic Model	Global	Track and intensity data only	-	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Other
NCEP Global Deterministic Model	Global	Track data only	-	192 hours (00, 06, 12, 18 UTC)	-	Other
ECMWF Global Deterministic Model	Global	Track data only	-	240 hours (00, 12 UTC)	-	Other
UKMO Global Deterministic Model	Global	Track and intensity data only	-	120 hours (00, 12 UTC)	-	Other
KMA Global Deterministic Model	Global	Track and intensity data only	-	168 hours (00, 12 hours)	-	Other
BoM Global Deterministic Model	Global	Track and intensity data only	-	240 hours (00, 12 UTC)	-	Other
CMC Global Deterministic Model	Global	Track data only	-	144 hours (00, 12 UTC)	-	Other
CMA Global Deterministic Model	Global	Track data only	-	120 hours (00, 12 UTC)	-	Other
DWD Global Deterministic Model	Global	Track data only	-	84 hours (00, 12 UTC)	-	Other
JMA Global EPS	Global	Track and intensity data only	-	132 hours (06, 18 UTC) 264 hours (00, 12 UTC)	27	Other
NCEP Global EPS	Global	Track data only	-	384 hours (00, 06, 12, 18 UTC)	21	Other
ECMWF Global EPS	Global	Track data only	-	240 hours (00, 12 UTC)	52	Other
UKMO Global EPS	Global	Track data only	-	168 hours (00, 06, 12, 18 UTC)	36	Other
NCEP Regional Deterministic Model (HWRF)	Based on the initial position of the TC	Track and intensity data only	-	126 hours (00, 06, 12, 18 UTC)	-	Other
HKO Regional Deterministic Model (NHM)	8°N-46.5 °N 85°E-148 °E	Track and intensity data only	-	72 hours (00, 06, 12, 18 UTC)	-	Other

3 NWP Systems in Operational Use

Note: Apart from HWRF, deterministic and EPS model forecasts from other centers are made available via the JMA Numerical Typhoon Prediction website (https://tynwp-web.kishou.go.jp/) or the WMO Global Telecommunication System (GTS). HWRF forecasts are available via the HWRF Forecast Guidance website (https://www.emc.ncep.noaa.gov/gc_wmb/vxt/HWRF/index.php)

References

Dvorak, V., 1984: Tropical cyclone intensity analysis using satellite data. *NOAA Tech. Rep.* NESDIS, **11**, 47 pp.

Harper, B.A., J.D. Kepert, and J.D. Ginger, 2010: Guidelines for Converting Between Various Wind Averaging Periods in Tropical Cyclone Conditions. *WMO Tech. Doc.* TD-No. **1555**, 54 pp.

Herndon, D. and C.S. Velden, 2018: An Update on the SATellite CONsensus (SATCON) Algorithm for Estimating Tropical Cyclone Intensity. *33rd Conf. Hurr. Trop. Meteor.* Ponte Vedra, FL, Amer. Meteor. Soc., **284**, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340235.html.

Kishimoto, K., 2008: Revision of JMA's Early Stage Dvorak Analysis and Its Use to Analyze Tropical Cyclones in the Early Developing Stage. *RSMC Tokyo - Typhoon Center Technical Review* No. **10**, 12 pp.

Knaff, J.A. and M. DeMaria, 2010: NOAA/NESDIS Multiplatform Tropical Cyclone Surface Wind Analysis. User Manual, 25 pp.

Knaff, J.A., C.J. Slocum, K.D. Musgrave, C.R. Sampson, and B.R. Strahl, 2016: Using Routinely Available Information to Estimate Tropical Cyclone Wind Structure. *Mon. Wea. Rev.*, **144**, 1233–1247, https://doi.org/10.1175/MWR-D-15-0267.1

Koba, H., T. Hagiwara, S. Osano and S. Akashi, 1991: Relationships between CI Number and Minimum Sea Level Pressure/Maximum Wind Speed of Tropical Cyclones. *Geophysical Magazine*, **44**, 15 - 25.

Olander, T.L. and C.S. Velden, 2007: The Advanced Dvorak Technique: Continued Development of an Objective Scheme to Estimate Tropical Cyclone Intensity Using Geostationary Infrared Satellite Imagery. *Wea. Forecasting*, **22**, 287–298, https://doi.org/10.1175/WAF975.1

Tsai, H.C. and R.L. Elsberry, 2014: Applications of situation-dependent intensity and intensity spread predictions based on a weighted analog technique. *Asia-Pacific J. Atmos. Sci.*, **50**, 507–518, https://doi.org/10.1007/s13143-014-0040-7

Velden, C.S. and L.M. Leslie, 1991: The Basic Relationship between Tropical Cyclone Intensity and the Depth of the Environmental Steering Layer in the Australian Region. *Wea. Forecasting*, **6**, 244–253, https://doi.org/10.1175/1520-0434(1991)006<0244:TBRBTC>2.0.CO;2

Velden, C.S., 1993: The relationship between tropical cyclone motion, intensity and the vertical extent of the environmental steering layer in the Atlantic basin. *20th Conf. Hurr. Trop. Meteor.*, San Antonio, TX., Amer. Meteor. Soc.

Tsuchiya, A., T. Mikawa and A. Kikuchi, 2001: Method of Distinguishing between Early Stage Cloud Systems that Develop into Tropical Storms and Ones that Do Not. *Geophysical Magazine Series* 2, **4**, 49 - 59.

Wimmers, A.J. and C.S. Velden, 2010: Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. *J. Appl. Meteor. Climatol.*, **49**, 2013-2034, https://doi.org/10.1175/2010JAMC2490.1

Name of the Member: [Republic of Korea]

1 Tropical Cyclone Analysis

Parameter	Time	Methods	Other Sources
Center Position, Central pressure, Maximum sustained wind speed, Direction and speed of movement, 15 m/s radii, 25 m/s radii	12, 18	 Satellite images (ASCAT, OSCAT etc) and other estimation methods which utilize surface observations (SYNOP, SHIP, BUOY, AWS, Radar) Dvorak technique for center pressure and maximum sustained wind speed estimates (Dvorak, 1984, Koba et al., 1991) 	

2 Tropical Cyclone Forecasting

Parameter	Issuance	Lead	Methods
	Time	Time	
Likelihood of	00, 06,	24 hours	EDA
development of	12, 18		Consensus method using deterministic Global NWP model
organized	UTC		(GDAPS, ECMWF, NECP, JMA etc.)
convective cloud			850 hPa and 200 hPa streamlines and steering flow of NWP
systems into TSs			models as reference
Center position,	00, 06,	12, 24, 36,	Center position, direction and speed of movement :
Direction and	12, 18	48, 72, 96,	(1) Consensus method using KMA Global Data Assimilation
speed of	UTC	120 hours	and Prediction System (GDAPS) and other deterministic Global
movement,			model (ECMWF, JMA, NCEP, etc.) (2) Global EPS (EPSG,
Radius of			ECMWF, JMA, NCEP, etc.) as reference
probability circle,			(3) Steering flow and Synoptic field as reference
Central pressure,			
Maximum			Radius of probability circle:
sustained wind			Expected TC locations with a probability of 70% at each lead
speed,			time for the latest 3 years
15 m/s radii, 25			
m/s radii			Central pressure, maximum sustained wind speed:
			(1) KMA Global Data Assimilation and Prediction System
			(GDAPS), other deterministic Global model (ECMWF, JMA,
			NCEP, etc.), Global EPS (EPSG, ECMWF, JMA, NCEP, etc.)
			and NCEP deterministic regional model (HWRF) as reference
			(2) Analysis of Sea Surface Temperature and Ocean heat
			content (2) Wind about of NW/D model
			(3) Wind shear of NWP model

3 NWP Systems in Operational Use

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
KMA Global Data Assimilation and Prediction System (GDAPS)	Global	~10 km	70	288 hours (00,12 UTC) 87 hours (06, 18 UTC)	-	Own
KMA Global EPS (EPSG)	Global	~32 km	70	288 hours (00,12 UTC)	48	Own
ECMWF deterministic Global model	Global	16 km	-	240 hours (00, 12 UTC)	-	Other
ECMWF Global EPS	Global	track data and intensity data	-	240 hours (00, 12 UTC)	51	Other
JMA deterministic Global model (GSM)	Global	~20 km	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Other
JMA Global EPS (GEPS)	Global	~40 km	100	132 hours (06, 18 UTC) 264 hours (00, 12 UTC)	27	Other

System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
NCEP deterministic Global model (GFS)	Global	1.0°	-	168 hours (00, 06, 12, 18 UTC)	-	Other
NCEP Global EPS	Global	1.0°	-	240 hours (00, 06, 12, 18 UTC)	21	Other
NCEP deterministic regional model (HWRF)	Regional	track and intensity data	-	Up to 126 hours (00, 06, 12, 18 UTC)	-	Other
Navy Global Environmental Model (NavGEM)	Global	track and intensity data		144 hours (00,12 UTC)		Other

APPENDIX 4-C STATIONS BROADCASTING CYCLONE WARNINGS FOR SHIPS ON THE HIGH SEAS

	Station	Call sign of coastal	Area asylarad
Member	Station	radio station	Area covered
	Shanghai	XSG	Bohai Sea, Huanghai Sea, Donghai Sea, Shanghai Port, Taiwan Straits and sea around Taiwan province
China	Tianjin	XSZ	North and Central Huanghai Sea and Bohai Sea
	Guangzhou	XSQ	Taiwan Straits, Bashi Channel, <u>South China</u> Nanhai -Sea and Beibu Wan Gulf
Hong Kong, China	Hong Kong	Broadcast via NAVTEX on 518 kHz ¹¹	Waters inside the boundary line: 30°N 105°E to 30°N 125°E to 10°N 125°E, to 10°N 105°E, to 30°N 105°E
	Hokkaido	JNL	Hokkaido area
	Shiogama	JNN	Sendai area
	Yokohama	JGC	Tokyo area
	Nagoya	JNT	Nagoya area
	Kobe	JGD	Kobe area
Japan	Hiroshima	JNE	Hiroshima area
	Niigata	JNV	Niigata area
	Maizuru	JNC	Maizuru area
	Moji	JNR	Fukuoka area
	Kagoshima	JNJ	Kagoshima area
	Okinawa	JNB	Okinawa area
	Klang	SSB 5	Strait of Malacca
Malaysia	Labuan	SSB 16	South China Sea
	Kuching	SSB 5	South China Sea
Dhilippipoo	Manila		Pacific waters inside the boundary line: 25°N 12°0E to 25°N 135°E, to 5°N 135°E, to 5°N 115°E, to 15°N 115°E, to 21°N 120°E, to 20°N 120°E
Philippines	San Miguel	NPO	North Pacific waters east of 160°E; Philippine Sea, Japan Sea, Yellow Sea, East China Sea, South China Sea
Republic of Korea	Seoul	HLL	East Sea, Yellow Sea, Jeju, Chusan, Nagasaki, and Kagoshima areas
Thailand	Bangkok	HSA	Gulf of Thailand, West coast of Southern Thailand, Strait of Malacca and South China Sea
U.S.A.	Honolulu, Hawaii	KMV-99	Pacific Ocean
	Dannang	XVT 1-2	Basco Gulf, Blendong Sea and Gulf of Thailand
Viet Nam	Halphong	XVG 5, 9	ditto
	Ho Chi Minh Ville	XVS 1, 3, 8	ditto
	Nha Trang	XVN 1, 2	ditto

¹¹ Coast station VRX closed on 1 October 2006.

Proposed new format for satellite imagery receiving facilities (Appendix 2-G) for 2021 edition

APPENDIX 2-G

APPENDIX 2-G SATELLITE IMAGI	ERY RECEIVING FACILI	TIES AT TYPHOO	<u>N C</u>	ON	ИM	ITT	EE	М	EM	BE	RS	1
Member	Statio	01-11-11				FengYun-2/3/4		Himawari-8/9	GEO-KOMPSAT-2A	NOAA/JPSS	AQUA/TERRA	METOP
								HimawariCloud	Direct Broadcast	Direct Broadcast	Direct Broadcast	Direct Broadcast
Cambodia				<u> </u>			~					
China DPR Korea	Beijing Pyongyang	39.9°N, 116.4°E 39.0°N, 125.8°E	~	~	~	~		~		~		-
Hong Kong, China	Kowloon	22.3°N, 114.2°E	~				~			~	~	
Japan	Minamitorishima	24.3°N, 154.0°E	<u> </u>				~			•	-	
Lao PDR							~					
Macao, China	Масао	22.2°N, 113.5°E	~				~			~		
Malaysia	Petaling Jaya	3.1°N, 101.7°E					~			~		
	Quezon City	14.7°N, 121.0°E		ļ			>			>		
Philippines	Cagayan de Oro City	8.5°N, 124.6°E				ļ	ļ	ļ				
1 mppmoo	Pasay City	14.5°N, 121.0°E				ļ		ļ				ļ
	Cebu	10.3°N, 124.0°E										
	Seoul	37.6°N, 127.0°E				 	~	 		~	~	
	Incheon Int. Airport	37.3°N, 126.3°E										
	Munsan	37.9°N, 126.8°E				 	 	 				
	Seosan	36.8°N, 126.5°E				 	 	 		~		
	Pusan	35.1°N, 129.0°E				ļ		_				
	Pusan Kimhae Air	35.2°N, 126.9°E				ļ	 	ļ				
	Kwangju	35.2°N, 126.9°E				ļ		ļ				ļ
	Taejon	36.4°N, 127.4°E				ļ	ļ	ļ				ļ
	Kangnung	37.5°N, 130.9°E			ļ	<u> </u>	<u> </u>	ļ				
	Cheju	33.5°N, 126.5°E										<u> </u>
	Taegu	35.9°N, 128.6°E										
Republic of Korea	Taegu/Air Traffic	35.9°N, 128.7°E										
	Chonju	35.8°N, 127.2°E		[
	Chongju	36.6°N, 127.4°E										
	Ullung-Do	37.5°N, 130.9°E	1		[Γ	Γ		[[
	Mokpo	34.8°N, 126.4°E	1	1		<u> </u>	[1			1	[
	Chunchon	37.9°N, 127.7°E	+	<u> </u>	<u> </u>		<u> </u>	 			†	1
	Masan	35.2°N, 128.6°E	+	<u> </u>	<u> </u>		<u> </u>	 			†	1
	Tongyong	34.9°N, 128.4°E	+	†	†	†	†	†		<u> </u>	†	†
	Inchon	37.5°N, 126.6°E	+	<u> </u>	†	†	 	†		 		†
	Huksando	34.7°N, 125.5°E		- <u> </u>	+	<u> </u>	 	╂			 	ł
			+	╂	<u> </u>	<u> </u>	├	<u> </u>			<u> </u>	<u> </u>
	Suwon	37.3°N, 127.0°E	+	╂	·	<u> </u>	┟	┟			 	<u> </u>
	Sokcho	38.3°N, 128.6°E					I					

Member	Statio	n	FengYun-2	FengYun-3	FengYun-4	FengYun-2/3/4		Himawari-8/9	GEO-KOMPSAT-2A	NOAA/JPSS	AQUA/TERRA	METOP
								HimawariCloud	Direct Broadcast	Direct Broadcast	Direct Broadcast	Direct Broadcast
	Pohang	36.0°N, 129.4°E		ļ	[ļ	[ļ		[I	
	Kunsan	36.0°N, 126.7°E 37.9°N, 124.6°E	_	.		ļ	 	ļ		 		
	Baengnyeong-do	-										
Singapore	Changi Airport			~		~			~	~		
Thailand	Bangkok					~			~			
USA	Guam					~			~			
Viet Nam	Hanoi	21.0°N, 105.5°E	<u> </u>	<u> </u>		ļ	~	<u> </u>		 		
Viet Ivani	Ho Chi Ming City	10.5°N, 106.4°E								~		

Draft Amendments to

the Typhoon Committee Operational Manual – Meteorological Component (TOM) proposed by the Members (except for editorial changes)

Page	Line	Proposed Revision	Comments
Section	2.6		
10	L46	Each Member's tropical cyclone forecast center should compile reliable passage, landfall, near station passage, near-buoy passage and near-ship passage data, tabulate that data and send it to the Typhoon Committee Secretariat (TCS) within a week after cyclone passage for distribution to other Members	Revision of description on passage report
Section	1		
11	L42	The RSMC Tokyo - Typhoon Center should prepare the products for numerical weather prediction shown in the WMO Manual on the Global Data-Processing and Forecasting System (GDPFS) (WMO-No.485). These products should be made available to Members in real-time, and should include the following	Addition of document number
Section	4.4		
14	L9	Operational guidance for handling and formatting meteorological information is given in detail in the Annex IV VI of the WMO Technical Regulations (Manual on Marine Meteorological Services - WMO-No. 558).	Correction of the description
15	L38	(n) Expected location and intensity at 12 and or 24 hour time periods.	Correction of the description
16	L9	The ICAO Asia and Pacific Regions Air Navigation Plan (Doc 9673 APAC ANP) describes the FIRs in the Asia and Pacific Regions and lists the designated MWOs and the requirements for the issuance of SIGMET information (including for tropical cyclone)	Correction of the description
Append	lix 2-A		
30		To be replaced by Annex 5-1	Update of stations which enable enhanced surface observation in Thailand
Append	lix 2-D		
35		To be replaced by Annex 5-2	Update of the distribution of the radar stations in Thailand
Append	lix 2-E		
36		To be replaced by Annex 5-3	Update of information on radar stations in Hong Kong, China; Republic of Korea and Thailand

Append	ix 2-F		
61	L21	 (b) Products (i) Full-Disk Observation Data: Every 10 minutes (ii) Japan Area Observation Data: Every 2.5 minutes (iii) Target Area Observation Data: Every 2.5 minutes (iv) Full-Disk AMV: Every hour (v) Full-Disk Clear Sky Radiance (CSR): Every hour (vi) AMV-based Sea-surface Wind data (ASWind) (Full-Disk): Every 30 minutes (vii) AMV-based Sea-surface Wind data (ASWind) (Target Area): Every 10 minutes 	Revision of information on Himawari-8/9 products and dissemination way
		 (c) Dissemination ways (i) HimawariCloud (Internet Cloud Service) Service which distributes full-spec imagery derived from the Himawari-series satellites (https://www.data.jma.go.jp/mscweb/en/himawar i89/cloud_service/cloud_service.html) (ii) HimawariCast (communication satellite dissemination service) Service which disseminates primary sets of imagery from the Himawari-series satellites via a communication satellite (https://www.data.jma.go.jp/mscweb/en/himawar i89/himawari_cast/himawari_cast.html) (iii) Internet Services for National Meteorological and Hydrological Services (NMHSs) 	
		 [JMA real-time satellite imagery webpage] https://www.jma.go.jp/en/gms/ [MSC (Meteorological Satellite Center) real-time satellite imagery webpage] https://www.data.jma.go.jp/mscweb/data/himawa ri/ [SATAID (Satellite Animation and Interactive Diagnosis) Service] https://www.wis-jma.go.jp/cms/sataid/ [JDDS (JMA Data Dissemination Service)] https://www.jma.go.jp/jma/jma-eng/satellite/jdds 	
		html https://www.data.jma.go.jp/mscweb/en/himawari 89/JDDS_service/JDDS_service.html	
62	L17	 4. COMS (operational since 2011 to March 2020) [Republic of Korea] (a) Observations (i) Full-Disk Observations: Every 3 hours (ii) Extended North Hemisphere Observations: Every 15 minutes (iii) Local Area Observations: Every 15 minutes 	Update of information on COMS

		 (b) Products (i) Full-Disk Observation Data: Every 3 hours (ii) Extended North Hemisphere Observation Data: Every 15 minutes (iii) Full-Disk AMV: Every 3 hours (c) Dissemination ways (i) Direct Broadcast Service It is not available, GK2A succeeded direct service mission. (http://nmsc.kma.go.kr/html/homepage/en/ver 2/static/selectStaticPage.do?view=datacenter.dat aService) (ii) Internet Services [National Meteorological Satellite Center website] http://nmsc.kma.go.kr/jsp/homepage/eng/main.do http://datasvc.nmsc.kma.go.kr/datasvc/html/mai n/main.do?lang=en 	
63	L10	 (c) Dissemination ways (i) Direct Broadcast Service 	Update of information on dissemination method of GEO-KOMPSAT-2A products
		 (ii) Internet Services [FTP-based Service] All sixteen channels data of full-disk image will be put on KMA's FTP server designated for GEO-KOMPSAT-2A data dissemination in every 10 minutes. (Account policy: 1 account per 1 country) Need personal contact (hyunjong.oh@korea.kr) [National Meteorological Satellite Center website] 	
		http://datasvc.nmsc.kma.go.kr/datasvc/html/main /main.do?lang=en	
Append	lix 2-G		
64		To be replaced by Annex 5-4	Update of information on satellite imagery receiving facilities at Hong Kong, China; Macao, China; Republic of Korea and

		Thailand
Appendix 3	-A	
69	To be replaced by Annex 5-5	Update of the NWP products and correction of the description
Appendix 3		
79	To be replaced by Annex 5-6	Update of the information on KMA's Global EPS
Appendix 4	C	
102	To be replaced by Annex 5-7	Update of the information on the area of broadcasting cyclone warnings for ships on the high seas
Appendix 5		
104	To be replaced by Annex 5-8	Update of the information on telecommunicatio n networks
Appendix 5	C	
106	To be replaced by Annex 5-9	Update of the contact details of Hong Kong, China; Macao, China; Republic of Korea and Thailand
Appendix 5	-E	
106	To be replaced by Annex 5-10	Update of the list of collection and distribution of information related to tropical cyclones by Hong Kong

APPENDIX 2-A

LIST OF STATIONS FROM WHICH ENHANCED SURFACE OBSERVATIONS ARE AVAILABLE

The following stations will make hourly surface observations when they are within 300 km of the centre of a tropical cyclone of TS intensity or higher:

Cambodia

China

- (54): 324, 337, 342, 346, 405, 423, 436, 471, 493, 497, 511, 534, 539, 602, 618, 662, 715, 751, 753, 776, 823, 826, 836, 843, 857, 863, 929, 945
- (58): 040, 141, 150, 238, 251, 265, 345, 362, 457, 472, 477, 543, 556, 569, 646, 652, 666, 752, 754, 834, 847, 911, 921, 926, 931, 944
- (59): 007, 023, 046, 058, 072, 082, 087, 096, 117, 134, 209, 211, 254, 278, 287, 293, 316, 417, 431, 456, 493, 501, 632, 644, 658, 663, 673, 758, 838, 845, 855, 948, 981

Democratic People's Republic of Korea

(47): 003, 005, 008, 014, 016, 020, 022, 025, 028, 031, 035, 037, 039, 041, 045, 050, 052, 055, 058, 060, 061, 065, 067, 068, 069

Hong Kong, China

(45): 007

Japan

(47): 401, 407, 409, 412, 418, 420, 421, 426, 430, 570, 575, 582, 584, 590, 600, 604, 605, 610, 624, 629, 636, 648, 651, 655, 662, 675, 678, 740, 741, 746, 750, 765, 772, 778, 800, 807, 815, 817, 827, 830, 843, 887, 891, 893, 895, 909, 918, 927, 936, 945, 971, 991

Lao People's Democratic Republic

Macao, China

(45): 011

Malaysia

(48): 601, 615, 620, 647, 650, 657, 665

(96): 413, 421, 441, 449, 465, 471, 481, 491

Philippines

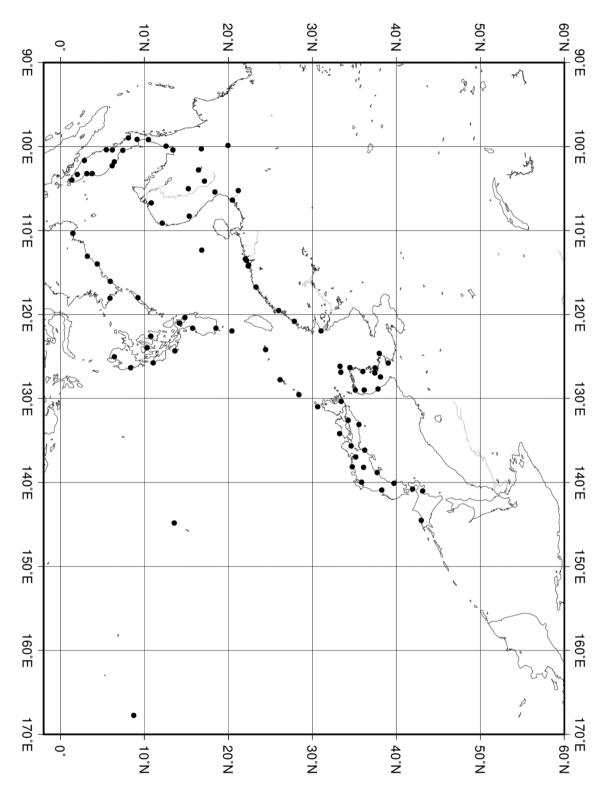
(98): 132, 133, 135, 222, 232, 233, 324, 325, 328, 329, 330, 333, 336, 425, 427, 428, 429, 430, 431, 432, 434, 435, 437, 440, 444, 446, 447, 526, 531, 536, 538, 543, 546, 548, 550, 555, 558, 618, 630, 637, 642, 644, 646, 648, 653, 741, 746, 747, 748, 751, 752, 753, 755, 836, 851

Republic of Korea

(47): 090, 093, 095, 098, 099, 100, 101, 102, 105, 106, 108, 112, 114, 115, 119, 121, 127, 129, 130, 131, 133, 135, 136, 137, 138, 140, 143, 146, 152, 155, 156, 159, 162, 165, 168, 169, 170, 172, 174, 175, 177, 184, 185, 188, 189, 192, 201, 202, 203, 211, 212, 214, 216, 217, 221, 226, 232, 235, 236, 243, 244, 245, 247, 248, 251, 252, 253, 254, 255, 257, 258, 259, 260, 261, 262, 263, 264, 266, 268, 271, 272, 273, 276, 277, 278, 279, 281, 283, 284, 285, 288, 289, 294, 295

Thailand

(48): 300, 302, 303, 304, 307, 310, 315, 324, 325, 327, 328, 329, 330, 331, 333, 334, 350, 351, 352, 353, 354, 355, 356, 357, 358, 360, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 390, 400, 401, 402, 403, 404, 405, 407, 408, 409, 410, 413, 415, 416, 417, 418, 419, 420, 421, 425, 426, 427, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 450, 451, 453, 455, 456, 458, 459, 460, 461, 462, 464, 465, 474, 475, 477, 478, 479, 480, 481, 500, 501, 517, 520, 532, 550, 551, 552, 556, 557, 560, 561, 563, 564, 565, 566, 567, 568, 569, 570, 571, 574, 580, 581, 583


USA

(91): 203, 212, 258, 317, 324, 334, 339, 348, 353, 356, 366, 367, 369, 371, 376, 378, 408, 413, 425, 434

Viet Nam

- (48): 820, 826, 839, 845, 848, 855, 870, 877, 900, 914, 917, 918, 920
- Note: Name, latitude, longitude and elevation of these stations are included in Weather Reporting, Volume A -Observing Stations (WMO Publication No. 9).

APPENDIX 2-D DISTRIBUTION OF THE RADAR STATIONS OF TYPHOON COMMITTEE MEMBERS

Annex 5-3

TECHNICAL SPECIFICATIONS OF RADARS OF TYPHOON COMMITTEE MEMBERS Name of the Member Hong Kong China

			Name of the	<u>ne Member</u>	Hong K	ong, Chi
NAME OF STATION		Tai Mo Shan	Tate's Cairn			
SPECIFICATIONS	Unit		•			
Index number		45009	45010			
		22° 25′ N	22° 21′ N			
Location of station		114° 07′ E	114° 13′ E			
Antenna elevation	m	968	582			
Wave length	cm	10.6	10.3			
Peak power of transmitter	kW	650	650			
Pulse length	μs	1.0/2.0	1.0/2.0			
Sensitivity minimum of receiver	dBm	109/-112 - 117-	-111/-114			
Beam width		0.9(H)	0.9 <mark>(H)</mark>			
(Width of over -3dB antenna gain of maximum)	deg					
antenna gain or maximum)		0.9(V)	0.9(V)			
Detection range	km	500	500			
Scan mode in observation						
1.Fixed elevation		2	2			
2.CAPPI						
3.Manually controlled						
DATA PROCESSING			1			
MTI processing		2	2			
1.Yes, 2.No			_			
Doppler processing		1	1			
1.Yes, 2.No		•				
Display		1	1			
1.Digital, 2.Analog						
OPERATION MODE (When tropic	al					
cyclone is within range of detection) 1.Hourly		2	2			
		3 (Continuous)	3 (Continuous)			
2.3-hourly						
3.Others						
PRESENT STATUS						
1.Operational		1	1			
2.Not operational (for research etc.)						

Name of the Member Republic of Korea - 1

Index number Location of station Antenna elevation	Jnit	Gosan 47185 33° 17´N	Seongsan 47188	Gangneung	Oseongsan	Baengnyeong do
Index number Location of station Antenna elevation	Jnit	33° 17′N	47188			
Location of station Antenna elevation		33° 17′N	47188			
Antenna elevation				47105	47144	47102
Antenna elevation			33° 23′N	37° 49′N	36° 00′N	37° 58′N
Antenna elevation			33.387103°N			
		126° 09'E 126.163073°	126° 52′E 126.879986°	128° 51′E 128.865647°	126° 47′E	124° 37′E 124.630307
		E	120.079900 E	120.000047 E	126.784168° E	124.030307 E
Wave length	m	103 101	68	99	234 231	185 188
J	cm	10.61 10.9	10.8 <mark>8</mark>	10.5 <mark>0</mark>	10.9 <mark>6</mark>	10.45 5.3
Peak power of transmitter	kW	850 750	850 750	850 750	850 750	850 250
Pulse length	μs	0.5, 1.0 ; , 2.0, 4.5	0.5, 1.0 ; , 2.0, 4.5	0.5, 1.0 ; , 2.0, 4.5	0.5, 1.0 ; , 2.0, 4.5	0.5, 1.0, ; 2. 4.5
Sensitivity minimum of d	IBm	-114 -112	-114 - 112	-114 -112	-114 - 112	-114- -108
Beam width	deg	1.0	1.0	1.0	1.0	1.0
Detection range	km	240, 480 250- (volume), 500 (lowest- tilt)	240, 480 250, 500	240, 480 280, 500	240, 480	240 256 , 48
Scan mode in observation						
1. Fixed elevation						
		1, 2	1, 2	1, 2	1, 2	1, 2
2. CAPPI						
3. Manually controlled						
DATA PROCESSING						
MTI processing						
1.Yes, 2.No		1 2	1 2	1 2	1 2	1 2
Doppler processing		1	1	1	1	1
1.Yes, 2.No						
Display		1	1	1	1	1
1.Digital, 2.Analog		· .	· · · ·		· · · · ·	· · ·
OPERATION MODE (When tropical						
cyclone is within range of detection)						
		3	3	3	3	3
1. Hourly		(5-minutely	(5-minutely	(5-minutely	(5-minutely	(5-minutel
2. 3-hourly		continuous)	continuous)	continuous)	continuous)	continuou
3. Others						
PRESENT STATUS						
		1			1	1
1.Operational		1	1	1	1	1

Gwangdeok Myeonbong NAME OF STATION Jindo Gwanaksan Gudeoksan -san -san SPECIFICATIONS Unit 47094 47116 47160 Index number 47175 47148 34° 28'N 38° 07'N 37° 26'N 36° 10'N 35° 07'N 34.472553°N 38.117316°N 36.179323°N 37.444119°N 35.118694°N 126° 19'E 127° 26'E 128° 59'E 126° 57'E 128° 59′ Location of station 126.323994° 127.433708° 128.997319° 126.963994° E128.99974 4°E Е Е Е Е 1066 1064 1136 1127 549 547 Antenna elevation m 497 641 640 Wave length cm 10.37 10.38 10.99 5.3 11.03 11.05 850 750 850 750 850 250 850 850 Peak power of transmitter kW 0.5, 1.0, 2.0, 0.5, 1.0, 2.0, 0.5, 1.0 0.5, 1.0, 2.0, 0.5, 1.0, 2.0, Pulse length 2.0, 4.5 μs 4.5 4.5 4.5 4.5 1.0: 2.5 1.0; 4.5 0.83; 2.5 1.0; 4.5 1.0; 4.5 Sensitivity minimum of -114 -112 -114 -112 -114 dBm -114 -112 -114 receiver Beam width (Width of over -3dB 1.0 1.0 1.0 1.0 1.0 deg antenna gain of maximum) 240, 480 240, 480 Detection range km 240, 480 240, 480 240, 480 250, 500 200 Scan mode in observation 1. Fixed elevation 1, 2 1, 2 1, 2 1, 2 1, 2 2. CAPPI 3. Manually controlled DATA PROCESSING MTI processing 121212 1212 1.Yes, 2.No Doppler processing 1 1 1 1 1 1.Yes, 2.No Display 1 1 1 1 1 1.Digital, 2.Analog **OPERATION MODE** (When tropical cyclone is within range of detection) 3 3 3 3 3 (5-minutely 1. Hourly (5-minutely (5-minutelye (5-minutely (5-minutely continuous) continuous) continuous) ontinuous) continuous) 2. 3-hourly 3. Others PRESENT STATUS 1 1 1 1 1 1.Operational 2.Not operational(for research etc.)

Name of the Member Republic of Korea - 2

		Name	of the Mem	ber Re	epublic of K	orea - 3
NAME OF STATION		Korean Aviation Meteorological Agency				
SPECIFICATIONS	Unit					
Index number		47113				
		37° 28′ N				
Location of station		126° 21′ E				
Antenna elevation	m	145				
Wave length	cm	5.32				
Peak power of transmitter	kW	250				
Pulse length	μs	1.0; 2.0				
Sensitivity minimum of receiver	dBm	-110				
Beam width (Width of over -3dB antenna gain of maximum)	deg	0.53				
Detection range	km	130, 428 30, 480				
Scan mode in observation						
1. Fixed elevation		1, 2				
2. CAPPI		1, 2				
3. Manually controlled						
DATA PROCESSING						
MTI processing		1 2				
1.Yes, 2.No		12				
Doppler processing		1				
1.Yes, 2.No						
Display		1				
1.Digital, 2.Analog						
OPERATION MODE (When tropic	al					
cyclone is within range of detection)		0				
1. Hourly		3 (continuous)				
2. 3-hourly						
3. Others						
PRESENT STATUS						
1.Operational		1				
2.Not operational(for research etc.)						

Name of the Member Republic of Korea - 3

			1 tu			
NAME OF STATION		Chiang Rai	Sakol Nakon Lamphun	Phitsanulok Sakol Nakon	Khon Khaen Phitsanulok	Ubon Ratchathani Khon Khaen
SPECIFICATIONS	Unit					
Index number		48303	48356 48329	48378 48356	48378 48378	48407 48381
Location of station		19° 57′ N	17° 09´ N 18° 34´ N 104° 07´ E	16° 47´ N 17° 09´ N 100° 16´ E	16° 27´ N 16° 47´ N 102° 47´ E	15° 14´ N 16° 27´ N 105° 01´ E
		99° 52′ E	99° 02′ E	104° 07′ Е	100° 16′ Е	102° 47′ Е
Antenna elevation	m	440	198 337	56 198	215 56	155 215
Wave length	cm	5	5	5	5	5
Peak power of transmitter	kW	300	300	300	300	300
Pulse length	μs	0.8&2	0.8&2	0.8&2	0.8&2	0.8&2
Sensitivity minimum of receiver	dBm	-110	-110	-110	-106 -110	-108 -106
Beam width (Width of over -3dB antenna gain of maximum)	deg	1.0	1.0	1.0	1.0	1.0
Detection range	km	240	240	240	240	240
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		1, 2	1, 2	1, 2	1, 2	1, 2
DATA PROCESSING						
MTI processing 1.Yes, 2.No		1	1	1	1	1
Doppler processing 1.Yes, 2.No		1	1	1	1	1
Display 1.Digital, 2.Analog		1	1	1	1	1
OPERATION MODE (When tropic cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	al	1, 3	1, 3	1, 3	1, 3	1, 3
PRESENT STATUS 1.Operational 2.Not operational(for research etc.)		1	1	1	1	1

Name of the Member Thailand - 1

			Nu			nananu - A
NAME OF STATION		Samut Songkram Chainat	Hua Hin Ubon Ratchathani	Chumporn Samut Songkram	Surat Thani Hua Hin	Krabi Chumporn
SPECIFICATIONS	Unit					
Index number		48438 48402	48475 48407	48517 48438	48551 48475	48563 48517
Location of station		13° 24´ N 15° 09´ N 100° 24´ E 100° 41´ E	12° 35´ N 15° 14´ N 99° 57´ E 105° 01´ E	10° 29´ N 13° 24´ N 99° 11´ E 100° 24´ E	9° 08′ N 12° 35′ N 99° 09′ E 99° 57′ E	8° 06′ N 10° 29′ N 98° 58′ E 99° 11′ E
Antenna elevation	m	29 45	30 155	28 29	33 30	51 28
Wave length	cm	5	10 -5	5	5 10	5
Peak power of transmitter	kW	300	500 300	300	300 500	300
Pulse length	μs	0.8&2	0.8&2	0.8&2	0.8&2	0.8&2
Sensitivity minimum of receiver	dBm	-110	-106 -108	-110	-110 -106	-106 -110
Beam width (Width of over -3dB antenna gain of maximum)	deg	1.0	2.1 1.0	1.0	1.0 2.1	1.0
Detection range	km	240	240	240	240	240
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		1, 2	1, 2	1, 2	1, 2	1, 2
DATA PROCESSING						
MTI processing 1.Yes, 2.No		1	1	1	1	1
Doppler processing 1.Yes, 2.No		1	1	1	1	1
Display 1.Digital, 2.Analog		1	1	1	1	1
OPERATION MODE (When tropic	al					
cyclone is within range of detection)						
1.Hourly		1, 3	1, 3	1, 3	1, 3	1, 3
2.3-hourly						
3.Others						
PRESENT STATUS						
1.Operational		1	1	1	1	1
2.Not operational(for research etc.)						

Name of the Member Thailand - 2

		1	-			nununu
NAME OF STATION		Sathing Pra (Songkla) Surat Thani	Narathiwat Krabi	Phuket	Sathing Pra (Songkla)	Narathiwat
SPECIFICATIONS	Unit					
Index number		48568 48551	48583 48563	48565	48568	48583
Location of station		7° 26′ N 9° 08′ N 100° 27′ E	6° 25´ N 8° 06´ N 101° 49´ E	8° 08′ N	7° 26′ N	6 <u>° 25′ N</u>
		99° 09' E	98° 58' E	98° 19′ E	100° 27′ Е	101° 49′ E
Antenna elevation	m	30 33	29 51	281	30	29
Wave length	cm	5	5	5	5	5
Peak power of transmitter	kW	300	300	300	300	300
Pulse length	μs	0.8&2	0.5&1 0.8_*2	0.8&2	0.8&2	0.5&1
Sensitivity minimum of receiver	dBm	-115 -110	-110 -106	-106	- 115	-110
Beam width (Width of over -3dB antenna gain of maximum)	deg	1.0	1.0	1.0	1.0	1.0
Detection range	km	240	120 240	240	240	120
Scan mode in observation 1.Fixed elevation 2.CAPPI 3.Manually controlled		1, 2	1, 2	1, 2	1, 2	1, 2
DATA PROCESSING						
MTI processing 1.Yes, 2.No		1	1	4	1	4
Doppler processing 1.Yes, 2.No		1	1	4	4	4
Display 1.Digital, 2.Analog		1	1	4	4	4
OPERATION MODE (When tropic cyclone is within range of detection) 1.Hourly 2.3-hourly 3.Others	al	1, 3	1, 3	1, 3	1, 3	1, 3
PRESENT STATUS 1.Operational 2.Not operational(for research etc.)		1	1	4	4	4

Name of the Member Thailand - 3

Annex 5-4

Appendix 2-G SATELLITE IMAGERY RECEIVING FACILITIES AT TYPHOON COMMITTEE MEMBERS

Member	Statio	n	Himawari 1. HimawariCloud 2. HimawariCast	NOAA 1. HRPT 2. APT	Meteosat 1. P-DUS
Cambodia			1, 2		
China	Beijing	39.9°N, 116.4°E	1	1	
DPR Korea	Pyongyang	39.0°N, 125.8°E		1	
Hong Kong, China ¹²	Kowloon	22.3°N, 114.2°E	1, 2	1	
Japan	Minamitorishima	24.3°N, 154.0°E	2		
Lao PDR			2		
Macao, China ¹³	Масао	22.2°N, 113.5°E	1, 2	4	
Malaysia	Petaling Jaya	3.1°N, 101.7°E	1, 2	1	
	Quezon City	14.7°N, 121.0°E	1, 2	1	
Philippines	Cagayan de Oro City	8.5°N, 124.6°E			
Fillippines	Pasay City	14.5°N, 121.0°E			
	Cebu	10.3°N, 124.0°E			
	Jinchoen Seoul	36.7°N, 127.4°E 37.6°N, 127.0°E	1, 2	1	1
	Incheon Int. Airport	37.3°N, 126.3°E			
	Munsan	37.9°N, 126.8°E			1
	Seosan	36.8°N, 126.5°E		1	
	Pusan	35.1°N, 129.0°E			
	Pusan Kimhae Air	35.2°N, 126.9°E			
	Kwangju	35.2°N, 126.9°E			
	Taejon	36.4°N, 127.4°E			
	Kangnung	37.5°N, 130.9°E			
	Cheju	33.5°N, 126.5°E			
	Taegu	35.9°N, 128.6°E			
– – – – – – – – – – – – – – – – – – –	Taegu/Air Traffic	35.9°N, 128.7°E			
Republic of Korea ¹⁴	Chonju	35.8°N, 127.2°E			
Korea	Chongju	36.6°N, 127.4°E			
	Ullung-Do	37.5°N, 130.9°E			
	Mokpo	34.8°N, 126.4°E			
	Chunchon	37.9°N, 127.7°E			
	Masan	35.2°N, 128.6°E			
	Tongyong	34.9°N, 128.4°E			
	Inchon	37.5°N, 126.6°E			
	Huksando	34.7°N, 125.5°E			
	Suwon	37.3°N, 127.0°E			
	Sokcho	38.3°N, 128.6°E			
	Pohang	36.0°N, 129.4°E			
	Kunsan	36.0°N, 126.7°E			
	Baengnyeong-do	37.9°N, 124.6°E	•		
Singapore ¹⁵	Changi Airport	1.4°N, 104.0°E	1, 2	1	1

¹² Hong Kong, China receives AQUA (MODIS), SNPP (CrIs, VIIRS, ATMS), FY-2 (S-VISSR), FY3B (VIRR, MERSI), FY3C (VIRR, MWHS, MWRI) and FY3D (MERSI-2, MWHS, MWTS, MWRI), FY4A (GIIRS, LMI, AGRI), GeoKompSAT-2A (AMI), GOES-E and GOES-W (ABI), Meteosat-8 (SEVIRI), and Meteosat-11 (SEVIRI) and TERRA (MODIS), METOP-A ,and METOP-B and METOP-C (AMSU-A, AVHRR, HIRS, MHS).
¹³ Macao, China receives FY-2G FY-2D, FY-2E (S-VISSR) Stretched VISSR.
¹⁴ Republic of Korea receives AQUA (MODIS, AIRS, AMSU, AMSR-E) and TERRA (MODIS).
¹⁵ Singapore receives AQUA (MODIS), FY-2B (S-VISSR) and TERRA (MODIS).

Thailand ¹⁶	Bangkok	13.7°N, 100.6°E	1, 2	4	
USA	Guam	13.4°N, 144.6°E	1	1	
Viet Nam	Hanoi	21.0°N, 105.5°E	1, 2	2	
	Ho Chi Ming City	10.5°N, 106.4°E		2	

¹⁶ Thailand receives FY-2C

APPENDIX 3-A

PRODUCTS PROVIDED BY RSMC TOKYO - TYPHOON CENTER

NWP products (GSM and GEPS) provided by RSMC Tokyo - Typhoon Center (Available at https://www.wis-jma.go.jp/cms/)

Model	GSM	GSM	GSM
Area and resolution	Whole globe, 1.25°×1.25°	20°S-60°N, 60°E-160°W 1.25°×1.25°	Whole globe, 2.5°×2.5°
Levels and elements	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 150 hPa: Z, U, V, T 200 hPa: Z, U, V, T, Ψ , χ 250 hPa: Z, U, V, T, H, ω 300 hPa: Z, U, V, T, H, ω 400 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω S00 hPa: Z, U, V, T, H, ω Surface: P, U, V, T, H, R [†]	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 200 hPa: Z $^{\$}$, U $^{\$}$, V $^{\$}$, T $^{\$}$, ψ , χ 250 hPa: Z, U, V, T 300 hPa: Z, U, V, T, D 400 hPa: Z, U, V, T, D 500 hPa: Z $^{\$}$, U $^{\$}$, V $^{\$}$, T $^{\$}$, D $^{\$}$, ζ 700 hPa: Z $^{\$}$, U $^{\$}$, V $^{\$}$, T $^{\$}$, D $^{\$}$, ω 850 hPa: Z $^{\$}$, U $^{\$}$, V $^{\$}$, T $^{\$}$, D $^{\$}$, ω 850 hPa: Z, U, V, T, D, ω 1000 hPa: Z, U, V, T, D, ω 1000 hPa: Z, U, V, T, D Surface: P $^{\$}$, U $^{\$}$, V $^{\$}$, T $^{\$}$, D $^{\$}$, R $^{\$}$	10 hPa: Z^* , U^* , V^* , T^* 20 hPa: Z^* , U^* , V^* , T^* 30 hPa: Z° , U° , V° , T° 50 hPa: Z° , U° , V° , T° 70 hPa: Z° , U° , V° , T° 100 hPa: Z° , U° , V° , T° 150 hPa: Z^* , U^* , V^* , T^* 200 hPa: Z , U , V , T 250 hPa: Z° , U° , V° , T° 300 hPa: Z , U , V , T , D^{*1} 400 hPa: Z^* , U^* , V^* , T^* , D^{*1} 500 hPa: Z , U , V , T , D^{*1} 500 hPa: Z , U , V , T , D 850 hPa: Z , U^* , V^* , T^* , D^{*1} Surface: P, U, V, T, D^{*1} , R^{\dagger}
Forecast hours	0 - 84 every 6 hours and 96 - 192 every 12 hours for 12UTC initial [†] Except analysis	0 - 84 (every 6 hours) [§] 96 - 192 (every 24 hours) for 12UTC initial [¶] 90 - 192 (every 6 hours) for 12UTC initial	0 - 72 every 24 hours and 96 - 192 every 24 hours for 12UTC ° 0 - 120 for 12UTC [†] Except analysis * Analysis only
Initial times	00, 06, 12, 18UTC	00, 06, 12, 18UTC	00UTC and 12UTC [‡] 00UTC only

Model	GEPS	GEPS	
Area and resolution	Whole globe, 2.5°×2.5°	Whole globe, 1.25°×1.25	
Levels and elements	250 hPa: μU, σU, μV, σV 500 hPa: μΖ, σΖ 850 hPa: μU, σU, μV, σV, μΤ, σΤ 1000 hPa: μΖ, σΖ Surface: μΡ, σΡ	250 hPa: μU, σU, μV, σV, μW,σW 500 hPa: μZ, σZ 850 hPa: μU, σU, μV, σV, μT, σT, μW, σW, Probability of temperature anomalies [±1, ±1.5, ±2σ] 1000 hPa: μZ, σZ Surface: μP, σP, Probability of 10 m sustained wind and gusts [10,15,25 m/s] [†] , Probability of precipitation [1,5,10,25,50,100 mm/24hour] [†]	
Forecast hours	0 - 192 every 12 hours	0 - 264 every 12 hours † Except analysis	
Initial times	00, 12UTC	00, 12 UTC	

Model	GSM	GSM	GSM
Area and resolution	5°S-90°N and 30°E-165°W, Whole globe 0.25° × 0.25°	5°S-90°N and 30°E-165°W, Whole globe 0.5° × 0.5°	Whole globe, 1.25°×1.25°
Levels and elements	Surface: U, V, T, H, P, Ps, R, Cla, Clh, Clm, Cll	10 hPa: Z, U, V, T, H, ω 20 hPa: Z, U, V, T, H, ω 30 hPa: Z, U, V, T, H, ω 50 hPa: Z, U, V, T, H, ω 50 hPa: Z, U, V, T, H, ω 100 hPa: Z, U, V, T, H, ω 100 hPa: Z, U, V, T, H, ω 100 hPa: Z, U, V, T, H, ω 200 hPa: Z, U, V, T, H, ω 200 hPa: Z, U, V, T, H, ω 300 hPa: Z, U, V, T, H, ω 300 hPa: Z, U, V, T, H, ω 400 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω 800 hPa: Z, U, V, T, H, ω 900 hPa: Z, U, V, T, H, ω 900 hPa: Z, U, V, T, H, ω 925 hPa: Z, U, V, T, H, ω 950 hPa: Z, U, V, T, H, ω 975 hPa: Z, U, V, T, H, ω Surface: U, V, T, H, P, Ps, R, Cla, Clh, Clm, Cll	10 hPa: Z, U, V, T 20 hPa: Z, U, V, T 30 hPa: Z, U, V, T 50 hPa: Z, U, V, T 50 hPa: Z, U, V, T 100 hPa: Z, U, V, T 100 hPa: Z, U, V, T 200 hPa: Z, U, V, T, ψ , χ 250 hPa: Z, U, V, T, ζ , Div 300 hPa: Z, U, V, T, H, ω 400 hPa: Z, U, V, T, H, ω 500 hPa: Z, U, V, T, H, ω , ζ 600 hPa: Z, U, V, T, H, ω , ζ 600 hPa: Z, U, V, T, H, ω , ζ 600 hPa: Z, U, V, T, H, ω , ζ 1000 hPa: Z, U, V, T, H, ω , ζ , Div 850 hPa: Z, U, V, T, H, ω , ζ , Div 1000 hPa: Z, U, V, T, H, ω Surface: P, U, V, T, H, R [†]
Forecast hours	0 - 84 (every 3 hours) 90 - 264 (every 6 hours) are available for 12 UTC Initial	0 - 84 (every 3 hours) 90 - 264 (every 6 hours) are available for 12 UTC Initial	0 - 132 every 6 hours and 144 - 264 every 12 hours for 12UTC initial † Except analysis
Initial times	00, 06, 12, 18 UTC	00, 06, 12, 18 UTC	00, 06, 12, 18 UTC

Notes:		Z: geopotential height	U: eastward wind
northwa	rd wind		
	T: temperature	D: dewpoint depression	H: relative humidity
	ω: vertical velocity	ζ: vorticity	ψ: stream function
	χ: velocity potential	P: sea level pressure	Ps: pressure
	R: rainfall	Cla: total cloudiness	Clh: cloudiness (upper layer)
Clm: cloudiness (middle layer)		Cll: cloudiness (lower layer)	
	Div: divergence	W:wind speed	

V:

The prefixes μ and σ represent the average and standard deviation of ensemble prediction results respectively. The symbols °, *, ¶, §, ‡ and † indicate limitations on forecast hours or initial time as shown in the

tables.

List of other products provided by RSMC Tokyo - Typhoon Center (Available at the Numerical Typhoon Prediction Website: https://tynwp-web.kishou.go.jp/)

Products	Frequency	Details			
RSMC Adv	RSMC Advisories				
RSMC TC Advisory	At least 8 times/day	 RSMC Tokyo - Typhoon Center's TC analysis, track forecast and intensity forecasts up to 120-hours (linked to the JMA's website: at https://www.jma.go.jp/en/typh/) 			
Storm Wind Probability Map	4 times/day	 Probabilistic forecast map for sustained wind upward of 50-kt with forecast of for 1, 2, 3, 4 and 5 days ahead 			
Prognostic Reasoning	4 times/day	RSMC Tokyo Tropical Cyclone Prognostic Reasoning (WTPQ3X)			
Operational Remarks Advance- notice		Advance notice on TC status change from RSMC Tokyo – Typhoon Center			
Graphical TC Advisory	4 times/day	 Graphical TC Advisory including RSMC Tokyo - Typhoon Center's TC analysis, track and intensity forecasts up to 24-hours and horizontal extents of cumulonimbus cloud and cloud top height associated with TCs potentially affecting aviation safety (linked to the Tropical Cyclone Advisory Center Tokyo Wwebsite at: https://www.data.jma.go.jp/fcd/tca/data/index.html) 			
Remote St	sensing				
Satellite Analysis	At least 4 times/day	 Results and historical logs of RSMC Tokyo – Typhoon Center's TC analysis conducted using satellite images (Conventional Dvorak analysis and Early-stage Dvorak analysis) 			
Satellite l <mark>i</mark> magery	Up to 142 times/day	 Satellite imagery of Himawari-8/9 (linked to the JMA's website: at https://www.jma.go.jp/en/gms/smallc.html?area=6&element=0&mode=UTC) 			
Satellite Microwave Products		 TC snapshot images Warm-core-based TC intensity estimates Weighted consensus TC intensity estimates made using Dvorak analysis and satellite microwave warm-core-based intensity estimates 			
Sea-surfac e AMV (ASwind)	Every 10 / 30 minutes	• AMV-based Sea-surface Wind in the vicinity of TC (linked to the Meteorological Satellite Center's web site: at http://www.data.jma.go.jp/mscweb/en/product/product/aswind/monitor/aswind. php)			
Radar Composite Imagery	Every hour	Radar composite imagery of the Typhoon Committee Regional Radar Network			
Atmosphe	ric Circulation				
Weather Charts	4 times/day	Weather maps for surface analysis, 24- and 48-hour forecasts (linked to the JMA's website: at https://www.jma.go.jp/en/g3/)			
NWP Multi Center Weather Charts	Twice/day	 Mean sea level pressure and 500 hPa Geopotential height (up to 168 hours) of deterministic NWP models from nine centers (BoM, CMA, CMC, DWD, ECMWF, KMA, NCEP, UKMO and JMA) 			
JMA GSM Analysis and Forecast	4 times/day	 Upper-air analysis and forecast data based on JMA-GSM Streamlines at 850, 500 and 200 hPa Divergence at 200 hPa Velocity potential at 200 hPa Vertical Velocity in Pressure Coordinate at 500 hPa Dew Point Depression at 600 hPa Curvature Vorticity at 850 hPa Vertical wind shear between 200 and 850 hPa Sea Level Pressure Genesis Potential Index 			
MJO phase diagram	Monthly Daily	MJO phase and amplitude diagram and MJO HovmöllerHavmoller diagram (linked to the Tokyo Climate Center JMA's web sites: https://ds.data.jma.go.jp/tcc/tcc/products/clisys/mjo/monitor.html			

Products	Frequency	Details
		https://ds.data.jma.go.jp/tcc/tcc/products/clisys/ASIA_TCC/mjo_cross.html)
Asian Monsoon Monitoring Indices	Daily, only during Apr Oct.	• Time series of vertical wind shear, OLR and other indices associated with SW Asian Monsoon (linked to the Tokyo Climate Center web site: https://ds.data.jma.go.jp/tcc/tcc/products/clisys/ASIA_TCC/monsoon_index.html JMA's web sites)
Ocean Co	ndition	
SST	Once/day	• Sea surface temperature and related its-related differences from 24 hours ago
TCHP	Once/day	• Tropical cyclone heat potential and its related differences from 24 hours ago
Numeric	al TC Prediction	
Track Forecast Bulletin	4 times/day	RSMC Tokyo Tropical Cyclone Track Forecast Bulletin Track forecast by deterministic GSM (FXPQ2X) Track forecast by GEPS (FXPQ3X)
TC Track Prediction	4 times/day	 TC track prediction of deterministic NWP models from nine centers (BoM, CMA, CMC, DWD, ECMWF, KMA, NCEP, UKMO and JMA) and a related consensus TC track prediction of ensemble NWP EPS models from four centers (ECMWF, NCEP, UKMO and JMA)
TC Activity Prediction	Twice/day	• Two- and five-day TC activity prediction maps based on ensemble NWP EPS models from four centers (ECMWF, UKMO, NCEP and JMA) and a related consensus
Marine F	orecast	
Storm Surge Forecasts	4 times/day	 Distribution maps of storm surge for RSMC Tokyo - Typhoon Center's TC track forecast and each of five TC track forecasts selected from GEPS ensemble members and maximum storm surge among these six TC track forecasts (up to 72 hours ahead) Time-series storm surge forecast charts for RSMC Tokyo - Typhoon Center's TC track forecast and each of five TC track forecasts selected from GEPS ensemble members (up to 72 hours ahead)
Ocean Wave Forecasts	Twice/day	 Distribution maps for of ensemble mean, maximum, probability of exceeding various thresholds and ensemble spread of wave height and period based on the Wave Ensemble System (WENS) (up to 264 hours ahead) Time-series representations with of box-and-whisker plots for of wave height/ and period, and probability of exceeding various thresholds of wave height/and period thresholds based on the WENS (up to 264 hours ahead)

System	System Domain Horizont Resolutio		Number of Vertical Levels	Forecast Range (Initial Time)	Specification of (Model/Data)
JMA deterministic Global model (GSM)	Global	TL959 (~20 km)	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	Model
BoM deterministic Global model (ACCESS-G)	Global	Lon: 0.35° Lat: 0.23°	-	240 hours (00, 12UTC)	Data
CMA deterministic Global model (GRAPES_GFS)	Global	0.28°	-	120 hours (00, 12, UTC)	Data
CMC deterministic Global model (GDPS)	Global	1.0°	-	144 hours (00, 12UTC)	Data
DWD deterministic Global model (ICON GME)	Global	0.25°	-	174 hours (00, 12UTC)	Data
ECMWF deterministic Global model (IFS-HRES)	Global	0.5°	-	240 hours (00, 12 UTC)	Data
KMA deterministic Global model (GDAPS)	Global Lon: 0.23° Lat: 0.16°		-	168 hours (00, 12UTC),	Data
NCEP deterministic Global model (GFS)	Global	0.5°	-	192 hours (00, 06, 12, 18 UTC)	Data
UKMO deterministic Global model	Global	Lon: 0.83° Lat: 0.56°	-	120 hours (00, 12 UTC)	Data

Deterministic NWP models used in the Numerical Typhoon Prediction website

APPENDIX 3-B

Analysis methods, forecasting methods and NWP for forecasting currently used by the NMSs of Typhoon Committee Members

Name of the Member: [Republic of Korea]

3 NWP Systems	in Operation	ial Use				
System	Domain	Horizontal Resolution	Number of Vertical Levels	Forecast Range (Initial Time)	Number of Ensemble Members	Run by (own/other centers)
KMA Global Data Assimilation and Prediction System (GDAPS)	Global	~10 km	70	288 hours (00,12 UTC) 87 hours (06, 18 UTC)	-	Own
KMA Global EPS (EPSG)	Global	~32 km	70	288 hours (00,12 UTC)	254 8	Own
ECMWF deterministic Global model	Global	16 km	-	240 hours (00, 12 UTC)	-	Other
ECMWF Global EPS	Global	track data and intensity data	-	240 hours (00, 12 UTC)	51	Other
JMA deterministic Global model (GSM)	Global	~20 km	100	132 hours (00, 06, 18 UTC) 264 hours (12 UTC)	-	Other
JMA Global EPS (GEPS)	Global	~40 km	100	132 hours (06, 18 UTC) 264 hours (00, 12 UTC)	27	Other
NCEP deterministic Global model (GFS)	Global	1.0°	-	168 hours (00, 06, 12, 18 UTC)	-	Other
NCEP Global EPS	Global	1.0°	-	240 hours (00, 06, 12, 18 UTC)	21	Other
NCEP deterministic regional model (HWRF)	Regional	track and intensity data	-	Up to 126 hours (00, 06, 12, 18 UTC)	-	Other
Navy Global Environmental Model (NavGEM)	Global	track and intensity data		144 hours (00,12 UTC)		Other

3 NW/P Systems in Operational Use

APPENDIX 4-C

STATIONS BROADCASTING CYCLONE WARNINGS FOR SHIPS ON THE HIGH SEAS

	Station	Call sign of coastal	Area covered
Member	Station	radio station	
	MemberStationradio stationMemberStationradio stationShanghaiXSGShanghaiXSGTianjinXSZGuangzhouXSQlong ong, chinaHong KongBroadcast via NAVTEX on 518 kHz17HokkaidoJNLShiogamaJNN YokohamaJGCNagoyaJNT KobeJGDNiigataJNV MaizuruJNENiigataJNV MaizuruJNC MojiMojiJNR KagoshimaJNBIalaysiaLabuan KuchingSSB 5 DZD, DZF, DE DZD, DZF, DE DZD, DZF, DE	XSG	Bohai Sea, Huanghai Sea, Donghai Sea, Shanghai Port, Taiwan Straits and sea around Taiwan province
China	Tianjin	xsz	North and Central Huanghai Sea and Bohai Sea
	Guangzhou	XSQ	Taiwan Straits, Bashi Channel, South China Sea and Beibu Wan Gulf
Hong Kong, China	Hong Kong	NAVTEX on 518	Waters inside the boundary line: 30°N 105°E to 30°N 125°E to 10°N 125°E, to 10°N 105°E, to 30°N 105°E
	Hokkaido	JNL	Hokkaido area
	Shiogama	JNN	Sendai area
	Yokohama	JGC	Tokyo area
	Nagoya	JNT	Nagoya area
 Japan	Kobe	JGD	Kobe area
	Hiroshima	JNE	Hiroshima area
	Niigata	JNV	Niigata area
N K C	Maizuru	JNC	Maizuru area
	Мојі	JNR	Fukuoka area
	Kagoshima	JNJ	Kagoshima area
	Okinawa	JNB	Okinawa area
	Klang	SSB 5	Strait of Malacca
Malaysia	Labuan	SSB 16	South China Sea
	Kuching	SSB 5	South China Sea
Philippine		DZD, DZF, DFH,	Pacific waters inside the boundary line: 25°N 12°0E to 25°N 135°E, to 5°N 135°E, to 5°N 115°E, to 15°N 115°E, to 21°N 120°E, to 20°N 120°E
S	San Miguel	NPO	North Pacific waters east of 160°E; Philippine Sea, Japan Sea, Yellow Sea, East China Sea, South China Sea
Republic of Korea	Seoul	HLL	East Sea, Yellow Sea, Jeju, Chusan, Nagasaki, and Kagoshima areas Waters inside the boundary line: 43°N 120°E to 43°N 132°E to 27°N 132°E, to 27°N 120°E, to 43°N 120°E
Thailand	Bangkok	HSA	Gulf of Thailand, West coast of Southern Thailand, Strait of Malacca and South China Sea
U.S.A.	Honolulu, Hawaii	KMV-99	Pacific Ocean

¹⁷ Coast station VRX closed on 1 October 2006.

	Dannang	XVT 1-2	Basco Thailan	-	Blendong	Sea	and	Gulf	of
Viet Nam	Halphong	XVG 5, 9	ditto						
		XVS 1, 3, 8	ditto						
	Nha Trang	XVN 1, 2	ditto						

Annex 5-8

APPENDIX 5-B

PRESENT OPERATIONAL STATUS OF THE METEOROLOGICAL TELECOMMUNICATION NETWORK FOR THE TYPHOON COMMITTEE REGION

<u>1. Main Telecomr</u>	nunication Network	Present Operational Status
	Beijing - Tokyo	Cable (MPLS), WMO FTP Beijing 16 Mbps/Tokyo 10 Mbps
	Beijing - Offenbach	Cable (MPLS), TCP/IP Beijing 16 Mbps/Offenbach 50 Mbps
	Washington - Tokyo	Internet, TCP/IP Cable (MPLS), TCP/IP Washington 50 Mbps/Tokyo 10 Mbps
2. Main regional c	sircuit	
	Tokyo - Bangkok	Cable (MPLS), TCP/IP Tokyo 6 Mbps/Bangkok <mark>3 Mbps 128- kbps</mark>
3. Regional circui	t <u>s</u>	
	Bangkok - Beijing	64 kbps leased line CMACast (Satellite broadcast)
	Bangkok - Hanoi	64 kbps leased line, FTP protocol
	Bangkok - Hong Kong	Internet, FTP protocol
	Bangkok - Phnom Penh	Internet (VPN), TCP/IP
	Bangkok - Vientiane	Cable (DDN), 64 kbps, FTP protocol and Internet, FTP protocol
	Beijing - Hanoi	64 kbps leased line, CMACast (Satellite broadcast)
	Beijing - Hong Kong	Cable (MSTP), <mark>20 Mbps 4 Mbps</mark> TCP/IP CMACast (Satellite broadcast)
	Beijing - Macao	20 Mbps leased line CMACast (Satellite broadcast)
	Beijing - Pyongyang	64 kbps leased line, CMACast (Satellite broadcast)
	Beijing - Seoul	Cable (MPLS), TCP/IP Beijing 16 Mbps/Seoul 4 Mbps

	Beijing - Vientiane	CMACast (Satellite broadcast)
	Hong Kong - Macao	Internet (VPN) and Mobile leased line
	Tokyo - Hong Kong	Cable (MPLS), <mark>WMO FTP TCP/IP Tokyo 6 Mbps/Hong Kong 1 Mbps</mark>
	Tokyo - Seoul	Cable (MPLS), WMO FTP Tokyo 10 Mbps/Seoul 4 Mbps
4. Inter-regional c	circuits	
	Bangkok - Kuala Lumpur	Cable (MPLS), TCP/IP 64 kbps
	Bangkok - Singapore	Cable (MPLS), TCP/IP 64 kbps
	Tokyo - Manila	Cable (MPLS), TCP/IP Tokyo 6 Mbps/Manila 64 kbps
5. RTH radio broa	adcast	
	Bangkok	1 FAX
	Tokyo	1 FAX
6. Satellite broad	<u>cast</u>	
	Operated by China: CMACast	Operational observations, warnings, NWP products, satellite image and fax distribution
	Operated by Japan: HimawariCast (JCSAT-2, 154°E)	Operational satellite image, NWP products, in-situ observation data and ASCAT ocean surface wind data distribution

7. Internet Cloud Service

Operated by Japan: HimawariCloud

Operational satellite image in full resolutions and bands

APPENDIX 5-C

LIST OF ADDRESSES, TELEX/CABLE AND TELEPHONE NUMBERSOF THE TROPICAL CYCLONE WARNING CENTERS IN THE REGION

Centre	Mailing address	Telex/cable, Telephone, fax
Centre	Maining address	numbers
Cambodia		
Attn. Mr Ly Chana	Norodom Boulevard	Tel.: (+855) 15 913081
Deputy Director		Fax: (+855) 23 26345
Department of Agricultural		
Hydraulics and Hydrometeorology		
Attn. Mr Hun Kim Hak	Pochentong	Tel/Fax: (+855) 23 66193
Chief of Cambodian National		66192 NMC
		66191 Airport
China	[.	
National Meteorological Center	No. 46 Zhongguancun	Tel.: (+86) (10) 5899 3198
China Meteorological Adm.	Nandajie, Beijing	Cable: 2894
(Director: Wang Jianjie)	100081	Fax: (+86) (10) 6217 2909
		E-mail: wangjj@cma.gov.cn
Democratic People's Republic of K		
Mr Ko Sang Bok	Oesong-dong	Telex: 38022 TCT KP
Director	Central District	Tel.: (+850) (2) 321 4539
Central Forecast Research Institute		Fax: (+850) (2) 381 4410
State Hydrometeorological Adm. Hong Kong, China		
Central Forecasting Office	134A Nathan Road	Tel.: (+852) 2926 8371
Hong Kong Observatory	Tsim Sha Tsui	(Office hours)
(Attn. Mr. L.S. LeeMs. M.K. Song)	Kowloon	(+852) 2368 1944 (24 hours)
(Auth. Mr. E.O. Econis: Milt. Cong)	Hong Kong, China	Fax: (+852) 2311 9448 (24 hours)
		E-mail: mksonglslee@hko.gov.hk
Japan		
Forecast Division	1-3-4 Otemachi	Telex: 2228080 METTOKJ
Forecast Department	Chiyoda-ku	(24 hours)
Japan Meteorological Agency	Tokyo 100-8122	Tel.: (+81) (3) 3211 8303
(Director: Y. Kajihara)		(00 - 09 UTC on weekdays)
		(+81) (3) 3211 7617 (24 hours)
		Fax: (+81) (3) 3211 8303
Lao People's Democratic Republic		
Ministry of Agriculture and Forestry,	P.O. Box 811	Telex: 4306 ONU VTELS
Department of Meteorology and	Vientiane	Cable: UNDEVPRO
Hydrology, VIENTIANE		
Macao, China	1	
Meteorological and Geophysical	Rampa do	Tel.: (+853) 88986173
Bureau	Observatório, Taipa	Fax: (+853) 28850773
(Acting Director: Leong Weng Kun	Grande, Macau, China	E-mail: meteo@smg.gov.mo
Tang lu Man)	P.O. Box 93	
Meloveia	Macao, China	
Malaysia Malaysian Matagralagiaal	Jolon Sulton	Tel: (+60) (2) 7067 9119
Malaysian Meteorological	Jalan Sultan	Tel.: (+60) (3) 7967 8118
Department (National Weather &	46667 Petaling Jaya	(+60) (3) 7967 8119 Fax: (+60) (3) 7955 0964
Geophysics Operation Centre) (Director: Dr. Mohd. Hisham)	Selangor Malaysia	E-mail: hisham@met.gov.my
	เงเลเลyจเล	

Centre	Mailing address	Telex/cable, Telephone, fax
Contro	Maining addrood	numbers
Philippines	-	-
Esperanza O. Cayanan Ph.D. Weather Services Chief Weather Division, PAGASA	WFFC Bldg., BIR Road, Diliman, Quezon City 1100	Telex: 66682 WXMLA PN Tel.: (+63) (2) 922 1996 Cable: 66682 WX MLA Fax: (+63) (2) 922 5287 (24 hours)
Typhoon Committee Secretariat		
Secretary: Yu Jixin	Avenida de 5 de Outubro Coloane, Macau	Tel: (853) 8 8010531 Fax: (853) 8 8010530 E-mail: yujx@typhooncommittee.org
Republic of Korea	1	
National Typhoon Center Korea Meteorological Administration (Dong Jin KIM, Meteorologist in charge) (Director: Deok Hwan JEONG)	2 Seoseongro 810-gil, Namwon-eup, eogwipo, Jeju, 63614, Republic of Korea	Tel.: (+82) (70) 7850-6365 Tel.: (+82) (70) 7850-6351 Fax: (+82) (64) 805-0368
Thailand		
Thai Meteorological Department (Group Cptain: Somsak Khaosuwan) (Director-General: Dr. Phuwieng Prakhammintara)	4353 Sukhumvit Road Bangna, Bangkok 10260	Tel&FAX: (+66) (2) 398 9875 E-mail: tmd_inter@tmd.go.th
Weather Forecast Division Thai Meteorological Department (Director: <u>Mr. Maytee Mahayosananta Dr. Sugunyanee Yavinchan)</u>	4353 Sukhumvit Road Bangna, Bangkok 10260	Tel&Fax: (+66) (2) 399 4001 E-mail: m_maytee9@yahoo.com sugunyanee@hotmail.com
South East Asia Meteorological Telecommunication Center Telecommunications Division Thai Meteorological Department (Director: Mrs. Wattana Singtuy) (Director: Mr. Sumreang Monkong)	4353 Sukhumvit Road Bangna, Bangkok 10260	Tel.: (+66) (2) 399 4555 Fax: (+66) (2) 398 9861 E-mail: gtsbkk@metnet.tmd.go.th tmd_inter@tmd.go.th
USA	1	
National Weather Service (Genevieve Miller, Meteorologist in charge)	3232 Hueneme Road Barrigada Guam 96913	Tel.: (+1-671) 472 0944 Fax: (+1-671) 472 7405
RSMC Honolulu (Director: Raymond Tanabe)	2525 Correa Road Suite 250 Honolulu, HI 96822	Tel.: (+1-808) 973-5272 Fax: (+1-808) 973-5271
Viet Nam		
Forecast Division Forecast Department Hydro-Meteorological Service (Director: Nguyan Cong Thanh)	4 Dan Thai Than Hanoi	Tel.: (+84) (4) 264020 Fax: (+84) (4) 254278

Annex 5-10

APPENDIX 5-E

COLLECTION AND DISTRIBUTION OF INFORMATION RELATED TO TROPICAL CYCLONES

							Rece	eiving sta					
Type of Data	He	ading	TD	BJ	BB	нн	MM	SL	NN	KK	IV	PP	MC
Enhanced	SNCI30	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	me
surface	SNHK20	VHHH	HH	НН	BJ	0	10	TD	BB	BB	BB	BB	НН
observation	SNJP20	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
observation	SNKO20	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	SNLA20	VLIV	BB	BB	IV	1D		0	BB	BB	0	BB	
	SINLAZU	VLIV	DD	DD	IV				DD	DD	0	DD	
	SNMS20	WMKK	BB	BB	KK	BJ			BB	0	BB	BB	
	SNMU40	VMMC	DD	MC	BJ	BJ		TD	BB	BB	BB	BB	0
	SNPH20	RPMM	MM	TD	TD	TD	0	TD	BB	BB	BB	BB	0
	SNTH20	VTBB	BB	TD	0	TD	0	TD	BB	BB	BB	BB	
	SNVS20	VNNN	BB	ΤD	NN	BJ		1D	0	BB	BB	BB	
Enhanced	USCI01	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
upper-air	USCI01	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
observation	USC105	BABJ	BJ	0	BJ	BJ	TD	TD	BJ	BB	BB	BB	
observation	USC105		ВJ	0	БJ BJ	ВJ	TD	TD	BJ	BB	BB		
		BABJ	БJ BJ	0	БJ BJ	БJ BJ	TD	TD		BB	BB	BB	
	USCI09	BABJ	ЪJ	0	БJ	БJ	ID	ID	BJ	DD	БВ	BB	
	UKCI01	BABJ	BJ	Ο	BJ	BJ		TD	BJ	BB	BB	BB	
	ULCI01	BABJ	ВJ	0	БJ BJ	ВJ		TD	BB	BB	BB	BB	
			ВJ	0	БJ BJ				BB	BB			
	ULCI03	BABJ	БJ BJ	0	БJ BJ	BJ		TD TD	BB	BB	BB BB	BB	
	ULCI05	BABJ	БJ BJ	0	БJ BJ	BJ		TD TD	BB	BB	BB	BB	
	ULCI07	BABJ	ЪJ	0	БJ	BJ		ID	БВ	DD	БВ	BB	
	ULCI09	BABJ	BJ	0	BJ	BJ		TD	BJ	BB	BB	BB	
	UECI09	BABJ	BJ	0	BJ	BJ		TD	BB	BB	BB	BB	
	USHK01	VHHH	БЈ НН	нн	БJ BJ	0	TD	TD	BB	BB	BB	BB	НН
	UKHK01	VHHH	НН	НН	БJ BJ	0	ID	TD	BB	BB	BB	BB	НН
	ULHK01	VHHH	НН	НН	БJ BJ	0		TD	BB	BB	BB	BB	НН
	ULINUI	VIIIII			ЪJ	0		ΤD	66	ы	ы	ЪЪ	
	UEHK01	VHHH	нн	нн	BJ	0		TD	BB	BB	BB	BB	НН
	USJP01	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	UKJP01	RJTD	0	TD	TD	TD	1D	TD	BB	BB	BB	BB	
	ULJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	UEJP01	RJTD	0	TD	TD	TD		TD	BB	BB	BB	BB	
	OEJFUI	KJID	0	ID	ID	ID		ID	DD	DD	DD	DD	
	USKO01	RKSL	SL	TD	TD	TD	TD	0	BB	BB	BB	BB	
	UKKO01	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	ULKO01	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	UEKO01	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
	USMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	0010001	VVIVITNIN	00	U	IXIX	U.	U	U	00	0	00	00	
	UKMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	ULMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	UEMS01	WMKK	BB	TD	KK	TD	TD	TD	BB	0	BB	BB	
	USPH01	RPMM	MM	TD	TD	TD	0	TD	BB	0	BB	BB	
	UKPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
			IVIIVI	10			0	10	00			00	
	ULPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
Continued to	UEPH01	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
the next page	USTH01	VTBB	BB	TD	0	TD	TD	TD	BB	BB	BB	BB	
ше пехі раде	001101	סטוע	00	יטי	0	ιD	U I	טי	00	00	00	00	

			Receiving station										
Type of Data	He	eading	TD	BJ	BB	ΗН	MM	SL	NN	KK	IV	PP	MC
Enhanced	UKTH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
Upper-air	ULTH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
observation	UETH01	VTBB	BB	TD	0	TD		TD	BB	BB	BB	BB	
	USVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	UKVS01	VNNN	BB	TD	NN	TD		TD	0	BB	BB	BB	
	ULVS01	VNNN	BB	TD	NN	TD	TD	TD	0	BB	BB	BB	
	UEVS01	VNNN	BB	TD	NN	TD	TD	TD	õ	BB	BB	BB	
	URPA10	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA11	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	URPA12	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
		PGTW	*	тр	TD	тр	тр	TD	BB	DD	DD	DD	
	URPA14		*	TD	TD	TD	TD	TD	BB BB	BB	BB	BB	
	URPN10	PGTW	*	TD TD	TD	TD	TD		BB	BB	BB	BB	
	UZPA13	PGTW	*	ID	TD	TD	TD	TD	BB	BB	BB BB	BB BB	
	UZPN13	KNHC	*	TD	TD	TD TD		TD TD		BB			
	UZPN13	KWBC		ID	ID	TD		ID	BB	BB	BB	BB	
	UZPN13	PGTW	*	TD	TD	TD		TD	BB	BB	BB	BB	
	IUDC01	VHHH	нн	HH	HH	0							
	IUDC02	VHHH	нн	нн	HH	0							
	IUDC03	VHHH	нн	нн	HH	0							
	IUDC04	VHHH	HH	HH	HH	0							
	IUDC05	VHHH	нн	нн	нн	0							
	IUDC06	VHHH	нн	нн	ΗН	0							
	IUDC07	VHHH	нн	нн	HH	0							
	IUDC08	VHHH	нн	нн	HH	0							
	IUDC09	VHHH	нн	HH	HH	0							
	IUDC10	VHHH	нн	нн	нн	0							
Enhanced	SNVB20	VTBB			0	-			BB	BB	BB	BB	
ship	SNVB20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
observation	SNVD20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVB21	RJTD	ο	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVD21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVE21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	SNVX20	RPMM	MM	TD	TD	TD	0	TD	BB		BB	BB	
	SNVX20	VHHH	нн	нн	BJ	0	TD	TD	BB	BB	BB	BB	нн
	SNVX20	VNNN	BB	TD	NN	TD		TD	0	BB	BB	BB	1111
Enhanced	SBCI30	BABJ	BJ	0	BJ	TD	TD	TD	BJ	BB	BB	BB	
radar	SCCI30	BABJ	55	0	BJ	BJ	10	10	BB	BB	BB	BB	
observation	SBCI60	BCGZ		0	BJ	5			BJ	BB	BB	BB	
Continued to	SCCI60	BCGZ	нн	0	BJ				BB	BB	BB	BB	
the next page	SBHK20	VHHH	НН	нн	BJ	0	TD		BB	BB	BB	BB	нн

							Rece	eiving st	ation				
Type of Data	He	eading	TD	BJ	BB	ΗН	MM	SL	NN	KK	IV	PP	MC
Enhanced	ISBC01	VHHH	НН	НН	HH	0	TD	TD		BB	BB	BB	
radar	ISBC01	RJTD	0	TD	TD	TD	TD	TD		BB	BB	BB	
observation	SDKO20	RKSL						0					
	SDMS20	WMKK	BB	TD	KK	TD			BB	0	BB	BB	
	SDPH20	RPMM	MM	TD	TD			TD	BB		BB	BB	
	SDTH20	VTBB	BB	TD	0	TD			BB	BB	BB	BB	
	SDVS20	VNNN	BB	TD	NN	TD	TD		0	BB	BB	BB	
Satellite	TPPN10	PGTW			TD	TD			BB	BB	BB	BB	
guidance	TPPN10	PGUA	*		TD	TD			BB	BB	BB	BB	
	TPPA1	RJTY	*	TD	TD	TD	TD		BB	BB	BB	BB	
	TPPA1	RODN	*	TD	TD	TD	TD		BB	BB	BB	BB	
	IUCC10	RJTD	0	TD	TD	TD	TD	TD		BB	BB	BB	
	IUCC01	VHHH	HH	HH	HH	0							
	IUCC02	VHHH	НН	HH	HH	0							
	IUCC03	VHHH	НН	HH	HH	0							
	IUCC04	VHHH	HH	HH	HH	0							
Tropical	FXPQ01	VHHH	НН	HH	BJ	0			BB	BB	BB	BB	HH
Cyclone	FXPQ02	VHHH	НН	HH	BJ	0			BB	BB	BB	BB	HH
Forecast	FXPQ03	VHHH	НН	HH	BJ	0			BB	BB	BB	BB	HH
	FXPQ20	VHHH	НН	HH	BJ	0	TD	TD	BB	BB	BB	BB	HH
	FXPQ21	VHHH	НН	HH		0							
	FXPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ22	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ23	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ24	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ25	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ29	VTBB			0								
	FXPQ30	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ31	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ32	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ33	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ34	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPQ35	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	FXPH20	RPMM	MM	TD	TD	TD	0	TD	BB	BB	BB	BB	
	FXSS01	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	НН
	FXSS02	VHHH	нн	нн	BJ	0			BB	BB	BB	BB	нн
	FXSS02	VHHH	нн	НН	BJ	0			BB	BB	BB	BB	НН
	FXSS20	VHHH	нн	НН	BJ	0	TD	TD	BB	BB	BB	BB	НН
	FXSS21	VHHH	нн	НН	20	0		.0	50	50		50	
	FXPN03	RKSL				TD		0					

			Receiving station										
Type of Data	Heading		TD	BJ	BB	НН	MM	SL	NN	KK	IV	PP	МС
		0											
Warning	WDPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
-	WDPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WHCI28	BCGZ			BJ	BJ			BJ	BB	BB	BB	
	WHCI40	BABJ	BJ	0	BJ	BJ			BJ	BB	BB	BB	
	WSPH	RPMM	*	TD	TD	TD	0	TD	BB	BB	BB	BB	
	WTMU40	VMMC	BJ	MC	BJ	ВJ			BB	BB	BB	BB	ο
	WTPN21	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	Ŭ
	WTPN31	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPN32	PGTW	*	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPN32 WTPH20	RPMM	MM	TD	TD	TD	0	ID	BB	DD	BB	BB	
	111120		101101	10		10			66		66		
	WTPH21	RPMM			TD		0		BB		BB	BB	
	WTPQ20	VHHH	HH	HH	BJ	0		TD	BB	BB	BB	BB	HH
	WTSS20	VHHH	НН	HH	BJ	0			BB	BB	BB	BB	HH
	WTTH20	VTBB	BB	TD	0	TD			BB	BB	BB	BB	
	WTVS20	VNNN			NN	BJ			0	BB	BB	BB	
	WTPQ20	RJTD	ο	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ21	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ22	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ23	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ24	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ25	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTKO20	RKSL	SL	TD	TD	TD		0	BB	BB	BB	BB	
Prognostic	WTPQ30	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Reasoning	WTPQ31	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Reasoning	WTPQ31 WTPQ32	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ32	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ33 WTPQ34	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WIT QUT	TOTE	Ŭ	10	10	10	10	10	66	66	66	66	
	WTPQ35	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Five-day	WTPQ50	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
forecast	WTPQ51	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ52	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ53	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ54	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	
	WTPQ55	RJTD	ο	TD	TD	TD	TD	TD	BB	BB	BB	BB	
Others			_		_	_	_	_	_		_	_	
Best track	AXPQ20	RJTD	0	TD	TD	TD	TD	TD	BB	BB	BB	BB	

Note: Meaning of abbreviation

0	:	Data originating centre
TD	:	Data transmitting centre - Tokyo
BJ	:	- Beijing
BB	:	- Bangkok
HH	:	- Hong Kong
MM	:	- Manila
SL	:	- Seoul
NN	:	- Hanoi
KK	:	- Kuala Lumpur
IV	:	- Vientiane
PP	:	- Phnom Penh
MC	:	- Macao
*	:	Places other than described above